Previous |  Up |  Next

Article

Title: Componentwise concave copulas and their asymmetry (English)
Author: Durante, Fabrizio
Author: Papini, Pier Luigi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 6
Year: 2009
Pages: 1003-1011
Summary lang: English
.
Category: math
.
Summary: The class of componentwise concave copulas is considered, with particular emphasis on its closure under some constructions of copulas (e.g., ordinal sum) and its relations with other classes of copulas characterized by some notions of concavity and/or convexity. Then, a sharp upper bound is given for the $L^{\infty}$-measure of non-exchangeability for copulas belonging to this class. (English)
Keyword: copulas
Keyword: exchangeability
Keyword: positive regression dependence
MSC: 60E05
MSC: 60G09
MSC: 62H05
MSC: 62H20
idZBL: Zbl 1191.62095
idMR: MR2650079
.
Date available: 2010-06-02T19:32:12Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140027
.
Reference: [1] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions.Triangular Norms and Copulas. World Scientific, Hackensack, NJ 2006. MR 2222258
Reference: [2] E. Alvoni, F. Durante, P.-L. Papini, and C. Sempi: Different types of convexity and concavity for copulas.In: New Dimensions in Fuzzy Logic and related Technologies – Proc. 5th EUSFLAT Conference (M. Štěpnička, V. Novák, and U. Bodenhofer, eds.), Volume 1, University of Ostrava 2007, pp. 185–189.
Reference: [3] E. Alvoni and P. L. Papini: Quasi-concave copulas, asymmetry and transformations.Comment. Math. Univ. Carolin. 48 (2007), 311–319. MR 2338099
Reference: [4] E. Alvoni, P.-L. Papini, and F. Spizzichino: On a class of transformations of copulas and quasi-copulas.Fuzzy Sets and Systems 160 (2009), 334–343. MR 2473107
Reference: [5] P. Capérà and C. Genest: Spearman’s $\rho $ is larger than Kendall’s $\tau $ for positively dependent random variables.J. Nonparametr. Statist. 2 (1993), 183–194. MR 1256381
Reference: [6] B. De Baets, H. De Meyer, and R. Mesiar: Asymmetric semilinear copulas.Kybernetika 43 (2007), 221–233. MR 2343397
Reference: [7] F. Durante, E. P. Klement, C. Sempi, and M. Úbeda-Flores: Measures of non-exchangeability for bivariate random vectors.Statist. Papers (2009), to appear (doi:10.1007/s00362-008-0153-0). MR 2679341
Reference: [8] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi: Copulas with given values on a horizontal and a vertical section.Kybernetika 43 (2007), 209–220. MR 2343396
Reference: [9] F. Durante, R. Mesiar, P.-L. Papini, and C. Sempi: 2-increasing binary aggregation operators.Inform. Sci. 177 (2007), 111–129. MR 2272737
Reference: [10] F. Durante and P.-L. Papini: A weakening of Schur-concavity for copulas.Fuzzy Sets and Systems 158 (2007), 1378–1383. MR 2321982
Reference: [11] F. Durante and P.-L. Papini: Non-exchangeability of negatively dependent random variables.Metrika (2009), to appear (doi:10.1007/s00184-008-0207-2). MR 2602184
Reference: [12] F. Durante, S. Saminger-Platz, and P. Sarkoci: Rectangular patchwork for bivariate copulas and tail dependence.Comm. Statist. Theory Methods 38 (2009), 2515–2527. MR 2596930
Reference: [13] F. Durante and C. Sempi: Copulæ  and Schur-concavity.Internat. Math. J. 3 (2003), 893–905. MR 1990502
Reference: [14] F. Durante and C. Sempi: Copula and semicopula transforms.Internat. J. Math. Math. Sci. 2005 (2005), 645–655. MR 2172400
Reference: [15] F. Durante and C. Sempi: On the characterization of a class of binary operations on bivariate distribution functions.Publ. Math. Debrecen 69 (2006), 47–63. MR 2228476
Reference: [16] H. Joe: Multivariate Models and Dependence Concepts.Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613
Reference: [17] E. P. Klement and A. Kolesárová: Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section.Monatsh. Math. 152 (2007), 151–167. MR 2346431
Reference: [18] E. P. Klement, A. Kolesárová, R. Mesiar, and A. Stupňanová: Lipschitz continuity of discrete universal integrals based on copulas.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems (to appear). MR 2654366
Reference: [19] E. P. Klement and R. Mesiar: How non-symmetric can a copula be? Comment.Math. Univ. Carolin. 47 (2006), 141–148. MR 2223973
Reference: [20] E. P. Klement, R. Mesiar, and E. Pap: Transformations of copulas.Kybernetika 41 (2005), 425–434. MR 2180355
Reference: [21] M. Marinacci and L. Montrucchio: Ultramodular functions.Math. Oper. Res. 30 (2005), 311–332. MR 2142035
Reference: [22] A. W. Marshall and I. Olkin: Inequalities: Theory of Majorization and its Applications.Academic Press, New York 1979. MR 0552278
Reference: [23] A. J. Mc Neil and J. Nešlehová: Multivariate Archimedean copulas, d-monotone functions and $\ell _1$-norm symmetric distributions.Ann. Statist. 37 (2009), 3059–3097. MR 2541455
Reference: [24] A. J. McNeil, R. Frey, and P. Embrechts: Quantitative Risk Management.Concepts, Techniques and Tools. Princeton University Press, Princeton, NJ 2005. MR 2175089
Reference: [25] P. M. Morillas: A method to obtain new copulas from a given one.Metrika 61 (2005), 169–184. Zbl 1079.62056, MR 2159414
Reference: [26] R. B. Nelsen: An Introduction to Copulas.Second edition. Springer, New York 2006. Zbl 1152.62030, MR 2197664
Reference: [27] R. B. Nelsen: Extremes of nonexchangeability.Statist. Papers 48 (2007), 329–336. Zbl 1110.62071, MR 2295821
Reference: [28] G. Salvadori, C. De Michele, N. T. Kottegoda, and R. Rosso: Extremes in Nature.An Approach Using Copulas. Springer, Dordrecht 2007.
Reference: [29] B. Schweizer and A. Sklar: Probabilistic Metric Spaces.Dover Publications, Mineola, N.Y. 2006.
Reference: [30] A. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. MR 0125600
Reference: [31] A. Sklar: Random variables, joint distributions, and copulas.Kybernetika 9 (1973), 449–460. MR 0345164
.

Files

Files Size Format View
Kybernetika_45-2009-6_9.pdf 926.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo