Previous |  Up |  Next

Article

Title: Primal interior-point method for large sparse minimax optimization (English)
Author: Lukšan, Ladislav
Author: Matonoha, Ctirad
Author: Vlček, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 5
Year: 2009
Pages: 841-864
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a primal interior-point method for large sparse minimax optimization. After a short introduction, the complete algorithm is introduced and important implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus the large sparse nonconvex minimax optimization problems can be solved successfully. The results of extensive computational experiments given in this paper confirm efficiency and robustness of the proposed method. (English)
Keyword: unconstrained optimization
Keyword: large-scale optimization
Keyword: minimax optimization
Keyword: nonsmooth optimization
Keyword: interior-point methods
Keyword: modified Newton methods
Keyword: variable metric methods
Keyword: computational experiments
MSC: 49K35
MSC: 65K10
MSC: 90C06
MSC: 90C47
MSC: 90C51
idZBL: Zbl 1198.90394
idMR: MR2599116
.
Date available: 2010-06-02T19:19:34Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140034
.
Reference: [1] J. R. Bunch and B. N. Parlett: Direct methods for solving symmetric indefinite systems of linear equations.SIAM J. Numer. Anal. 8 (1971), 639–655. MR 0305564
Reference: [2] R. H. Byrd, J. Nocedal, and R. A. Waltz: KNITRO: An integrated package for nonlinear optimization.In: Large-Scale Nonlinear Optimization (G. di Pillo and M. Roma, eds.), Springer, Berlin 2006, pp. 35–59. MR 2194566
Reference: [3] R. Fletcher: Practical Methods of Optimization.Second edition. Wiley, New York 1987. Zbl 0988.65043, MR 0955799
Reference: [4] R. Fletcher and E. Sainz de la Maza: Nonlinear programming and nonsmooth optimization by successive linear programming.Math. Programming 43 (1989), 235–256. MR 0993464
Reference: [5] Y. Gao and X. Li: Nonsmooth equations approach to a constrained minimax problem.Appl. Math. 50 (2005), 115–130. MR 2125154
Reference: [6] P. E. Gill and W. Murray: Newton type methods for unconstrained and linearly constrained optimization.Math. Programming 7 (1974), 311–350. MR 0356503
Reference: [7] P. E. Gill, W. Murray, and M. A. Saunders: SNOPT: An SQP algorithm for large-scale constrained optimization.SIAM Rev. 47 (2005), 99–131. MR 2149103
Reference: [8] A. A. Goldstein: On steepest descent.SIAM J. Control 3 (1965), 147–151. Zbl 0221.65094, MR 0184777
Reference: [9] A. Griewank: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.SIAM, Philadelphia 2000. Zbl 1159.65026, MR 1753583
Reference: [10] A. Griewank and P. L. Toint: Partitioned variable metric updates for large-scale structured optimization problems.Numer. Math. 39 (1982), 119–137. MR 0664541
Reference: [11] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions.Math. Programming 20 (1981), 1–13. Zbl 0441.90095, MR 0594019
Reference: [12] K. Jónasson and K. Madsen: Corrected sequential linear programming for sparse minimax optimization.BIT 34 (1994), 372–387. MR 1429938
Reference: [13] D. Le: Three new rapidly convergent algorithms for finding a zero of a function.SIAM J. Sci. Statist. Comput. 6 (1985), 193–208. Zbl 0561.65033, MR 0773291
Reference: [14] D. Le: An efficient derivative-free method for solving nonlinear equations.ACM Trans. Math. Software 11 (1985), 250–262. Zbl 0581.65033, MR 0814340
Reference: [15] L. Lukšan, C. Matonoha, and J. Vlček: Interior point method for nonlinear nonconvex optimization.Numer. Linear Algebra Appl. 11 (2004), 431–453. MR 2067814
Reference: [16] L. Lukšan, C. Matonoha, and J. Vlček: Nonsmooth equation method for nonlinear nonconvex optimization.In: Conjugate Gradient Algorithms and Finite Element Methods (M. Křížek, P. Neittaanmäki, R. Glovinski, and S. Korotov, eds.), Springer Verlag, Berlin 2004. MR 2082558
Reference: [17] L. Lukšan, M. Tůma, J. Hartman, J. Vlček, N. Ramešová, M. Šiška, and C. Matonoha: Interactive System for Universal Functional Optimization (UFO), Version 2006.ICS AS CR Report No. V-977, Prague, 2006.
Reference: [18] L. Lukšan and E. Spedicato: Variable metric methods for unconstrained optimization and nonlinear least squares.J. Comput. Appl. Math. 124 (2000), 61–93. MR 1803294
Reference: [19] L. Lukšan and J. Vlček: Sparse and Partially Separable Test Problems for Unconstrained and Equality Constrained Optimization, ICS AS CR Report No.V-767, Prague 1998.
Reference: [20] E. Polak, J. O. Royset, and R. S. Womersley: Algorithm with adaptive smoothing for finite minimax problems.J. Optim. Theory Appl. 119 (2003), 459–484. MR 2026459
Reference: [21] J. Vanderbei and D. F. Shanno: An interior point algorithm for nonconvex nonlinear programming.Comput. Optim. Appl. 13 (1999), 231–252. MR 1704122
Reference: [22] S. Xu: Smoothing methods for minimax problems.Comput. Optim. Appl. 20 (2001), 267–279.
.

Files

Files Size Format View
Kybernetika_45-2009-5_11.pdf 946.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo