Previous |  Up |  Next

Article

Title: On delay-dependent robust stability under model transformation of some neutral systems (English)
Author: Rodríguez, Salvador A.
Author: Dugard, Luc
Author: Dion, Jean-Michel
Author: León, Jesús de
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 5
Year: 2009
Pages: 825-840
Summary lang: English
.
Category: math
.
Summary: This paper focuses on the delay-dependent robust stability of linear neutral delay systems. The systems under consideration are described by functional differential equations, with norm bounded time varying nonlinear uncertainties in the "state" and norm bounded time varying quasi-linear uncertainties in the delayed "state" and in the difference operator. The stability analysis is performed via the Lyapunov-Krasovskii functional approach. Sufficient delay dependent conditions for robust stability are given in terms of the existence of positive definite solutions of LMIs. (English)
Keyword: time-delay systems
Keyword: neutral system
Keyword: stability
MSC: 34K20
MSC: 34K40
MSC: 93C15
MSC: 93D09
idZBL: Zbl 1190.93079
idMR: MR2599115
.
Date available: 2010-06-02T19:18:13Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140045
.
Reference: [1] C. Abdallah, M. Ariola, and V. Koltchinskii: Statistical-learning control of multiple-delay systems with applications to ATM Networks.Kybernetika 37 (2001), 355–365. MR 1859091
Reference: [2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory.Society for Industrial and Applied Mathematics, Philadelphia 1994. MR 1284712
Reference: [3] J. Chen: On computing the maximal delay intervals for stability of linear delay systems.IEEE Trans. Automat. Control 40 (1995), 1087–1093. Zbl 0991.93554, MR 1345968
Reference: [4] M. A. Cruz and J. K. Hale: Stability of functional differential equations of neutral type.J. Differential Equations 7 (1970), 334–355. MR 0257516
Reference: [5] L. E. El’sgol’ts and S. B. Norkin: Introduction to the Theory and Applications of Differential Equations with Derivating Arguments (translated from Russian).(Mathematics in Science and Engineering, Vol. 105.) Academic Press, New York 1973. MR 0352647
Reference: [6] M. Fliess and H. Mounier: On a class of linear delay systems often arising in practice.Kybernetika 37 (2001), 295–308. MR 1859087
Reference: [7] E. Fridman: Descriptor discretized Lyapunov functional method: analysis and design.IEEE Trans. Automat. Control 51 (2006), 890–897. MR 2232620
Reference: [8] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics (Mathematics and Its Applications Series 74).Kluwer Academic Publishers, Dordrecht 1992. MR 1163190
Reference: [9] K. Gu and S. Niculescu: Additional dynamics in transformed time-delay systems.Proc. IEEE Trans. Automat. Control 45 (2000), 572–575. MR 1762880
Reference: [10] J. K. Hale and M. A. Cruz: Existence, uniqueness and continuous dependence for hereditary systems.Ann. Mat. Pura Appl. 85 (1970), 63–82. MR 0262633
Reference: [11] J. K. Hale and S. M. Verduyn Lunel: Introduction to Functional Differential Equations.Springer–Verlag, Berlin 1993. MR 1243878
Reference: [12] J. K. Hale and M. A. Cruz: Strong stabilization of neutral functional differential equations.IMA J. Math. Control Inform. 19 (2002), 5–23. MR 1899001
Reference: [13] D. Ivanescu, S. Niculescu, L. Dugard, J. M. Dion, and E. I. Verriest: On delay dependent stability for linear neutral systems.Automatica 39 (2003), 255–261. MR 2136946
Reference: [14] V. L. Kharitonov: Robust stability analysis of time-delay systems: a survey.In: IFAC Conference System Structure and Control, Nantes 1998, pp. 1–12.
Reference: [15] V. B. Kolmanovskii and A. D. Myshkis: Introduction to The Theory and Applications of Functional Differential Equations.Kluwer Academic Publishers, Dordrecht 1999. MR 1680144
Reference: [16] V. B. Kolmanovskii and V. R. Nosov: On the stability of first order nonlinear equations of neutral type.Prikl. Mat. Mekh. 34 (1970), 587–594. MR 0350159
Reference: [17] V. B. Kolmanovskii and J. P. Richard: Stability of some systems with distributed delays.JESA, Special Issue on Analysis and Control of Time-delay Systems 31 (1997), 13–18.
Reference: [18] V. B. Kolmanovskii and J. P. Richard: Stability of some linear systems with delays.IEEE Trans. Automat. Control 44 (1999), 984–989. MR 1690541
Reference: [19] Y. Kuang: Delay-Differential Equation with Applications in Population Dynamics.Academic Press, New York 1993.
Reference: [20] H. Li, S.-M. Zhong, and H. B. Li: Some new simple stability criteria of linear neutral systems with a single delay.J. Comput. Appl. Math. 200 (2007), 441–447. MR 2276843
Reference: [21] C.-H. Lien: Asymptotic criterion for neutral systems with multiple time delays.IEE Elec. Lett. 35 (1999), 850–851.
Reference: [22] S. I. Niculescu and B. Brogliato: Force measurement time-delays and contact instability phenomenon.European J. Control 5 (1999), 279–289.
Reference: [23] S. I. Niculescu: On delay-dependent stability under model transformations of some neutral linear systems.Internat. J. Control 74 (2001), 609–617. Zbl 1047.34088, MR 1827547
Reference: [24] S. I. Niculescu: On robust stability of neutral systems.Kybernetika 37 (2001), 253–263. MR 1859084
Reference: [25] S. I. Niculescu, E. I.Verriest, L. Dugard, and J.-M. Dion: Stability and robust stability of time–delay systems: A guided tour.In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 1–71. MR 1482571
Reference: [26] P. Ngoc and B. Lee: Some sufficient conditions for exponential stability of linear neutral functional differential equations.Appl. Math. Comput. 170 (2005), 515–530. MR 2177558
Reference: [27] J. P. Richard: Time-delay systems: An overview of some recent advances and open problems.Automatica 39 (2003), 1667–1694. Zbl 1145.93302, MR 2141765
Reference: [28] S. A. Rodriguez, J. M. Dion and L. Dugard: Robust stability analysis of neutral systems under model transformation.In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1850–1855.
Reference: [29] S.A. Rodriguez, J.M. Dion and L. Dugard: Stability of neutral time delay systems: A survey of some results.In: Advances in Automatic Control (Mihail Voicu ed.), Kluwer Academic Publishers, Boston 2003, pp. 315–336. MR 2058095
Reference: [30] S. A. Rodriguez, J. M. Dion, and L. Dugard: Robust delay-dependent stability analysis of neutral systems.In: Advances in Time-Delay Systems Vol. 38 (S. Niculescu and K. Gu, eds.), Springer–Verlag, Berlin 2004, pp. 269–284. MR 2087200
Reference: [31] E. I. Verriest and S. I. Niculescu: Delay-independent stability of LNS: A Riccati equation approach.In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 92–100. MR 1482573
.

Files

Files Size Format View
Kybernetika_45-2009-5_10.pdf 892.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo