Previous |  Up |  Next

Article

Title: Parametrization and geometric analysis of coordination controllers for multi-agent systems (English)
Author: Wang, Xiaoli
Author: Hong, Yiguang
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 5
Year: 2009
Pages: 785-800
Summary lang: English
.
Category: math
.
Summary: In this paper, we address distributed control structures for multi-agent systems with linear controlled agent dynamics. We consider the parametrization and related geometric structures of the coordination controllers for multi-agent systems with fixed topologies. Necessary and sufficient conditions to characterize stabilizing consensus controllers are obtained. Then we consider the consensus for the multi-agent systems with switching interaction topologies based on control parametrization. (English)
Keyword: multi-agent systems
Keyword: parametrization
Keyword: geometric structures
Keyword: coordination control
MSC: 35R35
MSC: 49J40
MSC: 60G40
MSC: 93C85
MSC: 93D15
idZBL: Zbl 1209.93012
idMR: MR2599112
.
Date available: 2010-06-02T19:14:40Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140035
.
Reference: [1] A. Ben-Israel and T. N. E. Greville: Generalized Inverses.Wiley, New York 1972.
Reference: [2] Y. Cao, Y. Sun, and J. Lam: Simultaneous stabilization via static output feedback and state feedback.IEEE Trans. Automat. Control 44 (1999), 1277–1282. MR 1689151
Reference: [3] J. A. Fax and R. M. Murray: Information flow and cooperative control of vehicle formation.IEEE Trans. Automat. Control 49 (2004), 1465–1476. MR 2086912
Reference: [4] C. Godsil and G. Royle: Algebraic Graph Theory.Springer-Verlag, New York 2001. MR 1829620
Reference: [5] Y. Hong, L. Gao, D. Cheng, and J. Hu: Lyapuov-based approach to multi-agent systems with switching jointly connected interconnection.IEEE Trans. Automat. Control 52 (2007), 943–948. MR 2324260
Reference: [6] R. A. Horn and C. R. Johnson: Matrix Theory.Cambridge University Press, Cambridge 1986.
Reference: [7] J. Imura and T. Yoshikawa: Parametrization of all stabilizing controllers of nonlinear systems.Systems Control Lett. 29 (1997), 207–213. MR 1428418
Reference: [8] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman: Decentralized control of vehicle formations.Systems Control Lett. 54 (2005), 899–910. MR 2152868
Reference: [9] : .R. A. Luke, P. Dorato, and C. T. Abdallah: A survey of state feedback simultaneous stabilization techniques.
Reference: [10] : .http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.7062
Reference: [11] R. Ober: Balanced parametrization of classes of linear systems.SIAM J. Control Optim. 29 (1991), 1251–1287. Zbl 0741.93010, MR 1132182
Reference: [12] A. Ohara and S. Amari: Differential geometric structures of stable state feedback systems with dual connections.Kybernetika 30 (1994), 369–386. MR 1303289
Reference: [13] A. Ohara and T. Kitamori: Geometric stuctures of stable state feedback systems.IEEE Trans. Automat. Control 38 (1993), 1579–1583. MR 1242914
Reference: [14] R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Automat. Control 49 (2004), 1520–1533. MR 2086916
Reference: [15] W. Ren and E. Atkins: Second-order consensus protocols in multiple vehicle systems with local interactions.Proc. AIAA Guidance, Navigation, Control Conf. San Francisco, CA, 2005, Paper AIAA-2005-6238.
Reference: [16] X. Wang and Y. Hong: Finite-time consensus for multi-agent networks with second-order agent dynamics.In: IFAC World Congress, Korea 2008, pp. 15185–15190.
Reference: [17] M. Vidyasagar: Nonlinear Systems Analysis.Enflewood Cliffs, Prentice Hall, N.J. 1993. Zbl 1006.93001
.

Files

Files Size Format View
Kybernetika_45-2009-5_7.pdf 853.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo