Full entry |
PDF
(0.9 MB)
Feedback

discounted cost; random rate; stochastic systems; approximation algorithms; density estimation

References:

[1] H. Berument, Z. Kilinc, and U. Ozlale: **The effects of different inflation risk premiums on interest rate spreads**. Physica A 333 (2004), 317–324. MR 2100223

[2] L. Devroye and L. Györfi: **Nonparametric Density Estimation the $L_{1}$ View**. Wiley, New York 1985. MR 0780746

[3] E. B. Dynkin and A. A. Yushkevich: **Controlled Markov Processes**. Springer–Verlag, New York 1979. MR 0554083

[4]
A. Gil and A. Luis: Modelling the U. S. interest rate in terms of I(d) statistical model. Quart. Rev. Economics and Finance 44 (2004), 475–486.

[5] R. Hasminskii and I. Ibragimov: **On density estimation in the view of Kolmogorov’s ideas in approximation theory**. Ann. Statist. 18 (1990), 999–1010. MR 1062695

[6] J. González-Hernández, R. R. López-Martínez, and R. Pérez-Hernández: **Markov control processes with randomized discounted cost in Borel space**. Math. Meth. Oper. Res. 65 (2007), 27–44.

[7] S. Haberman and J. Sung: **Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary**. Insurance Math. Econom. 36 (2005), 103–116. MR 2122668

[8] O. Hernández-Lerma: **Adaptive Markov Control Processes**. Springer–Verlag, New York 1989. MR 0995463

[9] O. Hernández-Lerma and J. B. Lasserre: **Discrete-Time Markov Control Processes: Basic Optimality Criteria**. Springer–Verlag, New York 1996. MR 1363487

[10] O. Hernández-Lerma and J. B. Lasserre: **Further Topics on Discrete-Time Markov Control Processes**. Springer–Verlag, New York 1999. MR 1697198

[11] O. Hernández-Lerma and W. Runggaldier: **Monotone approximations for convex stochastic control problems**. J. Math. Syst., Estimation, and Control 4 (1994), 99–140. MR 1298550

[12] P. Lee and D. B. Rosenfield: **When to refinance a mortgage: a dynamic programming approach**. European J. Oper. Res. 166 (2005), 266–277.

[13] R. G. Newell and W. A. Pizer: **Discounting the distant future: how much do uncertain rates increase valuation? J**. Environmental Economic and Management 46 (2003), 52–71.

[14] B. Sack and V. Wieland: **Interest-rate smooothing and optimal monetary policy: A review of recent empirical evidence**. J. Econom. Business 52 (2000), 205–228.

[15] M. Schäl: **Conditions for optimality and for the limit of n-stage optimal policies to be optimal**. Z. Wahrsch. Verw. Gerb. 32 (1975), 179–196. MR 0378841

[16] M. Schäl: **Estimation and control in discounted stochastic dynamic programming**. Stochastics 20 (1987), 51–71. MR 0875814

[17] N. L. Stockey and R. E. Lucas, Jr.: **Recursive Methods in Economic Dynamics**. Harvard University Press, Cambridge, MA 1989. MR 1105087