Previous |  Up |  Next


time-delay systems; neutral system; stability
This paper focuses on the delay-dependent robust stability of linear neutral delay systems. The systems under consideration are described by functional differential equations, with norm bounded time varying nonlinear uncertainties in the "state" and norm bounded time varying quasi-linear uncertainties in the delayed "state" and in the difference operator. The stability analysis is performed via the Lyapunov-Krasovskii functional approach. Sufficient delay dependent conditions for robust stability are given in terms of the existence of positive definite solutions of LMIs.
[1] C. Abdallah, M. Ariola, and V. Koltchinskii: Statistical-learning control of multiple-delay systems with applications to ATM Networks. Kybernetika 37 (2001), 355–365. MR 1859091
[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, Philadelphia 1994. MR 1284712
[3] J. Chen: On computing the maximal delay intervals for stability of linear delay systems. IEEE Trans. Automat. Control 40 (1995), 1087–1093. MR 1345968 | Zbl 0991.93554
[4] M. A. Cruz and J. K. Hale: Stability of functional differential equations of neutral type. J. Differential Equations 7 (1970), 334–355. MR 0257516
[5] L. E. El’sgol’ts and S. B. Norkin: Introduction to the Theory and Applications of Differential Equations with Derivating Arguments (translated from Russian). (Mathematics in Science and Engineering, Vol. 105.) Academic Press, New York 1973. MR 0352647
[6] M. Fliess and H. Mounier: On a class of linear delay systems often arising in practice. Kybernetika 37 (2001), 295–308. MR 1859087
[7] E. Fridman: Descriptor discretized Lyapunov functional method: analysis and design. IEEE Trans. Automat. Control 51 (2006), 890–897. MR 2232620
[8] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics (Mathematics and Its Applications Series 74). Kluwer Academic Publishers, Dordrecht 1992. MR 1163190
[9] K. Gu and S. Niculescu: Additional dynamics in transformed time-delay systems. Proc. IEEE Trans. Automat. Control 45 (2000), 572–575. MR 1762880
[10] J. K. Hale and M. A. Cruz: Existence, uniqueness and continuous dependence for hereditary systems. Ann. Mat. Pura Appl. 85 (1970), 63–82. MR 0262633
[11] J. K. Hale and S. M. Verduyn Lunel: Introduction to Functional Differential Equations. Springer–Verlag, Berlin 1993. MR 1243878
[12] J. K. Hale and M. A. Cruz: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5–23. MR 1899001
[13] D. Ivanescu, S. Niculescu, L. Dugard, J. M. Dion, and E. I. Verriest: On delay dependent stability for linear neutral systems. Automatica 39 (2003), 255–261. MR 2136946
[14] V. L. Kharitonov: Robust stability analysis of time-delay systems: a survey. In: IFAC Conference System Structure and Control, Nantes 1998, pp. 1–12.
[15] V. B. Kolmanovskii and A. D. Myshkis: Introduction to The Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999. MR 1680144
[16] V. B. Kolmanovskii and V. R. Nosov: On the stability of first order nonlinear equations of neutral type. Prikl. Mat. Mekh. 34 (1970), 587–594. MR 0350159
[17] V. B. Kolmanovskii and J. P. Richard: Stability of some systems with distributed delays. JESA, Special Issue on Analysis and Control of Time-delay Systems 31 (1997), 13–18.
[18] V. B. Kolmanovskii and J. P. Richard: Stability of some linear systems with delays. IEEE Trans. Automat. Control 44 (1999), 984–989. MR 1690541
[19] Y. Kuang: Delay-Differential Equation with Applications in Population Dynamics. Academic Press, New York 1993.
[20] H. Li, S.-M. Zhong, and H. B. Li: Some new simple stability criteria of linear neutral systems with a single delay. J. Comput. Appl. Math. 200 (2007), 441–447. MR 2276843
[21] C.-H. Lien: Asymptotic criterion for neutral systems with multiple time delays. IEE Elec. Lett. 35 (1999), 850–851.
[22] S. I. Niculescu and B. Brogliato: Force measurement time-delays and contact instability phenomenon. European J. Control 5 (1999), 279–289.
[23] S. I. Niculescu: On delay-dependent stability under model transformations of some neutral linear systems. Internat. J. Control 74 (2001), 609–617. MR 1827547 | Zbl 1047.34088
[24] S. I. Niculescu: On robust stability of neutral systems. Kybernetika 37 (2001), 253–263. MR 1859084
[25] S. I. Niculescu, E. I.Verriest, L. Dugard, and J.-M. Dion: Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 1–71. MR 1482571
[26] P. Ngoc and B. Lee: Some sufficient conditions for exponential stability of linear neutral functional differential equations. Appl. Math. Comput. 170 (2005), 515–530. MR 2177558
[27] J. P. Richard: Time-delay systems: An overview of some recent advances and open problems. Automatica 39 (2003), 1667–1694. MR 2141765 | Zbl 1145.93302
[28] S. A. Rodriguez, J. M. Dion and L. Dugard: Robust stability analysis of neutral systems under model transformation. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1850–1855.
[29] S.A. Rodriguez, J.M. Dion and L. Dugard: Stability of neutral time delay systems: A survey of some results. In: Advances in Automatic Control (Mihail Voicu ed.), Kluwer Academic Publishers, Boston 2003, pp. 315–336. MR 2058095
[30] S. A. Rodriguez, J. M. Dion, and L. Dugard: Robust delay-dependent stability analysis of neutral systems. In: Advances in Time-Delay Systems Vol. 38 (S. Niculescu and K. Gu, eds.), Springer–Verlag, Berlin 2004, pp. 269–284. MR 2087200
[31] E. I. Verriest and S. I. Niculescu: Delay-independent stability of LNS: A Riccati equation approach. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer–Verlag, Berlin 1997, pp. 92–100. MR 1482573
Partner of
EuDML logo