Previous |  Up |  Next

Article

Title: New estimates and tests of independence in semiparametric copula models (English)
Author: Bouzebda, Salim
Author: Keziou, Amor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 178-201
Summary lang: English
.
Category: math
.
Summary: We introduce new estimates and tests of independence in copula models with unknown margins using $\phi$-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior or a boundary value of the parameter space. Simulation results show that the choice of $\chi^2$-divergence has good properties in terms of efficiency-robustness. (English)
Keyword: dependence function
Keyword: multivariate rank statistics
Keyword: semiparametric inference
Keyword: copulas
Keyword: boundary
Keyword: divergences
Keyword: duality
MSC: 62F03
MSC: 62F10
MSC: 62F12
MSC: 62G05
MSC: 62G10
MSC: 62H05
MSC: 62H12
MSC: 62H15
idZBL: Zbl 1187.62067
idMR: MR2666901
.
Date available: 2010-06-02T19:52:45Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140046
.
Reference: [1] M. Broniatowski and A. Keziou: Minimization of $\phi $-divergences on sets of signed measures.Studia Sci. Math. Hungar. 43 (2006), 4, 403–442. MR 2273419
Reference: [2] S. Bouzebda and A. Keziou: A test of independence in some copula models.Math. Methods Statist. 17 (2008), 2, 123–137. MR 2429124
Reference: [3] M. Broniatowski and A. Keziou: Parametric estimation and tests through divergences and the duality technique.J. Multivariate Anal. 100 (2009), 1, 16–36. MR 2460474
Reference: [4] S. Bouzebda and S. Keziou: A new test procedure of independence in copula models via $\chi ^2$-divergence.Comm. Statist. Theory Methods 38 (2009), 20, to appear. MR 2654856
Reference: [5] N. Cressie and T. R. C. Read: Multinomial goodness-of-fit tests.J. Roy. Statist. Soc. Ser. B,46 (1984), 3, 440–464. MR 0790631
Reference: [6] P. Deheuvels: La fonction de dépendance empirique et ses propriétés.Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. (5), 65 (1979), 6, 274–292. Zbl 0422.62037, MR 0573609
Reference: [7] P. Deheuvels: Propriétés d’existence et propriétés topologiques des fonctions de dépendance avec applications à la convergence des types pour des lois multivariées.C. R. Acad. Sci. Paris Sér. A-B 288 (1979), 2, A145–A148. Zbl 0396.60019, MR 0524771
Reference: [8] P. Deheuvels: Nonparametric test of independence.In: Proc. Nonparametric Asymptotic Statistics, Rouen 1979 (Lecture Notes in Mathematics 821). Springer, Berlin 1980, pp. 95–107. MR 0604022
Reference: [9] P. Deheuvels: A Kolmogorov-Smirnov type test for independence and multivariate samples.Rev. Roumaine Math. Pures Appl. 26 (1981), 2, 213–226. Zbl 0477.62030, MR 0616038
Reference: [10] P. Deheuvels: A multivariate Bahadur–Kiefer representation for the empirical copula process.Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 364 (2009), 120–147. MR 2749128
Reference: [11] Z. Feng and C. E. McCulloch: Statistical inference using maximum likelihood estimation and the generalized likelihood ratio when the true parameter is on the boundary of the parameter space.Statist. Probab. Lett. 13 (1992), 4, 325–332. MR 1160755
Reference: [12] J.-D. Fermanian, D. Radulović, and M. Wegkamp: Weak convergence of empirical copula processes.Bernoulli 10 (2004), 5, 847–860. MR 2093613
Reference: [13] P. Gaenssler and W. Stute: Seminar on empirical processes.(Notes based on lectures given at the Seminar on Empirical Processes held at Schloß Mickeln, Düsseldorf, FRG, September 8–13, 1985). DMV Seminar, Bd. 9. Birkhäuser Verlag, Basel – Boston 1987. MR 0902803
Reference: [14] J. Galambos: Order statistics of samples from multivariate distributions.J. Amer. Statist. Assoc. 70 (1975) (351, part 1), 674–680. Zbl 0315.62022, MR 0405714
Reference: [15] C. Genest, K. Ghoudi, and L.-P. Rivest: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.Biometrika 82 (1995), 3, 543–552. MR 1366280
Reference: [16] E. J. Gumbel: Bivariate exponential distributions.J. Amer. Statist. Assoc. 55 (1960), 698–707. Zbl 0099.14501, MR 0116403
Reference: [17] J. Hüsler and R.-D. Reiss: Maxima of normal random vectors: between independence and complete dependence.Statist. Probab. Lett. 7 (1989), 4, 283–286. MR 0980699
Reference: [18] H. Joe: Parametric families of multivariate distributions with given margins.J. Multivariate Anal. 46 (1993), 2, 262–282. Zbl 0778.62045, MR 1240425
Reference: [19] H. Joe: Multivariate Models and Dependence Concepts ( Monographs on Statistics and Applied Probability, vol.73). Chapman & Hall, London 1997. MR 1462613
Reference: [20] A. Keziou: Dual representation of $\phi $-divergences and applications.C. R. Math. Acad. Sci. Paris 336 (2003), 10, 857–862. Zbl 1043.62002, MR 1990028
Reference: [21] A. Keziou and S. Leoni-Aubin: On empirical likelihood for semiparametric two-sample density ratio models.J. Statist. Plann. Inference 138 (2008), 4, 915–928. MR 2384498
Reference: [22] G. Kimeldorf and A. Sampson: One-parameter families of bivariate distributions with fixed marginals.Comm. Statist. 4 (1975), 293–301. MR 0370861
Reference: [23] G. Kimeldorf and A. Sampson: Uniform representations of bivariate distributions.Comm. Statist. 4 (1975), 7, 617–627. MR 0397989
Reference: [24] K.-Y. Liang and S. G. Self: On the asymptotic behaviour of the pseudolikelihood ratio test statistic.J. Roy. Statist. Soc. Ser. B 58 (1996), 4, 785–796. MR 1410191
Reference: [25] F. Liese and I. Vajda: Convex Statistical Distances.Teubner, Leipzig 1987. MR 0926905
Reference: [26] F. Liese and I. Vajda: On divergences and informations in statistics and information theory.IEEE Trans. Inform. Theory 52 (2006), 10, 4394–4412. MR 2300826
Reference: [27] B. V. M. Mendes, E. F. L. de Melo, and R. B. Nelsen: Robust fits for copula models.Comm. Statist. Simulation Comput. 36 (2007), 4–6, 997–1017. MR 2415700
Reference: [28] D. S. Moore and M. C. Spruill: Unified large-sample theory of general chi-squared statistics for tests of fit.Ann. Statist. 3 (1975), 599–616. MR 0375569
Reference: [29] R. B. Nelsen: An Introduction to Copulas.(Lecture Notes in Statistics, vol. 139.) Springer-Verlag, New York 1999. Zbl 1152.62030, MR 1653203
Reference: [30] D. Oakes: Multivariate survival distributions.J. Nonparametr. Statist. 3 (1994), 3–4, 343–354. MR 1291555
Reference: [31] R. T. Rockafellar: Convex Analysis.Princeton University Press, Princeton, N.J. 1970. MR 0274683
Reference: [32] L. Rüschendorf: Asymptotic distributions of multivariate rank order statistics.Ann. Statist. 4 (1976), 5, 912–923. MR 0420794
Reference: [33] L. Rüschendorf: On the distributional transform, Sklar’s theorem, and the empirical copula process.J. Statist. Plann. Inference 139 (2009), 11, 3921–3927. MR 2553778
Reference: [34] F. H. Ruymgaart: Asymptotic normality of nonparametric tests for independence.Ann. Statist. 2 (1974), 892–910. Zbl 0303.62040, MR 0386140
Reference: [35] F. H. Ruymgaart, G. R. Shorack, and W. R. van Zwet: Asymptotic normality of nonparametric tests for independence.Ann. Math. Statist. 43 (1972), 1122–1135. MR 0339397
Reference: [36] B. Schweizer: Thirty years of copulas.In: Advances in probability distributions with given marginals, Rome 1990, vol. 67, Math. Appl., pp. 13–50. Kluwer Academic Publishers, Dordrecht 1991. Zbl 0727.60001, MR 1215944
Reference: [37] S. G. Self and K.-Y. Liang: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions.J. Amer. Statist. Assoc. 82 (1987), 398, 605–610. MR 0898365
Reference: [38] J. H. Shih and T. A. Louis: Inferences on the association parameter in copula models for bivariate survival data.Biometrics 51 (1995), 4, 1384–1399. MR 1381050
Reference: [39] A. Sklar: Random variables, joint distribution functions, and copulas.Kybernetika 9 (1973), 449–460. Zbl 0292.60036, MR 0345164
Reference: [40] M. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. MR 0125600
Reference: [41] W. Stute: The oscillation behavior of empirical processes: The multivariate case.Ann. Probab. 12 (1984), 361–379. Zbl 0533.62037, MR 0735843
Reference: [42] H. Tsukahara: Semiparametric estimation in copula models.Canad. J. Statist. 33 (2005), 3, 357–375. Zbl 1077.62022, MR 2193980
Reference: [43] W. Wang and A. A. Ding: On assessing the association for bivariate current status data.Biometrika 87 (2000), 4, 879–893. MR 1813981
.

Files

Files Size Format View
Kybernetika_46-2010-1_11.pdf 641.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo