Previous |  Up |  Next

Article

Title: Statistical aspects of associativity for copulas (English)
Author: González-Barrios, José M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 149-177
Summary lang: English
.
Category: math
.
Summary: In this paper we study in detail the associativity property of the discrete copulas. We observe the connection between discrete copulas and the empirical copulas, and then we propose a statistic that indicates when an empirical copula is associative and obtain its main statistical properties under independence. We also obtained asymptotic results of the proposed statistic. Finally, we study the associativity statistic under different copulas and we include some final remarks about associativity of samples. (English)
Keyword: discrete copulas
Keyword: associativity
Keyword: permutations
Keyword: independence
MSC: 60C05
MSC: 62E15
MSC: 62H05
MSC: 62H20
idZBL: Zbl 1187.62094
idMR: MR2666900
.
Date available: 2010-06-02T19:50:37Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140056
.
Reference: [1] I. Aguiló, J. Suñer, and J. Torrens: Matrix representation of discrete quasi-copulas.Fuzzy Sets and Systems (2007), doi: 10.1016/j.fss2007.10.004. MR 2419976
Reference: [2] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions: Triangular Norms and Copulas.World Scientific Publishing Co., Singapore 2006. MR 2222258
Reference: [3] P. Deheuvels: La fonction de dépendance empirique et ses propriétés.Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292. Zbl 0422.62037, MR 0573609
Reference: [4] A. Erdely, J. M. González-Barrios, and R. B. Nelsen: Symmetries of random discrete copulas.Kybernetika 44 (2008), 6, 846–863. MR 2488911
Reference: [5] T. P. Hettmansperger: Statistical Inference Based on Ranks.Wiley, New York 1984. Zbl 0665.62039, MR 0758442
Reference: [6] S. Jenei: On the convex combination of left-continuous $t$-norms.Aequationes Mathematicae 72 (2006), 47–59. Zbl 1101.39010, MR 2258806
Reference: [7] S. Jenei: On the geometry of associativity.Semigroup Forum 74 (2007), 439–466. Zbl 1131.20047, MR 2321577
Reference: [8] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000. MR 1790096
Reference: [9] E. P. Klement and R. Mesiar: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms.Elsevier, Amsterdam 2005. MR 2166082
Reference: [10] E. P. Klement and R. Mesiar: How non-symmetric can a copula be? Comment.Math. Univ. Carolinae 47 (2006), 1, 141–148. MR 2223973
Reference: [11] A. Kolesárová, R. Mesiar, J. Mordelová, and C. Sempi: Discrete Copulas.IEEE Trans. Fuzzy Systems 14 (2006), 698–705.
Reference: [12] A. Kolesárová and J. Mordelová: Quasi-copulas and copulas on a discrete scale.Soft Computing 10 (2006), 495–501.
Reference: [13] E. L. Lehmann: Nonparametric Statistical Methods Based on Ranks.Revised first edition. Springer, New York 2006. MR 2279708
Reference: [14] G. Mayor, J. Suñer, and J. Torrens: Copula-like operations on finite settings.IEEE Trans. Fuzzy Systems 13 (2005), 468–477.
Reference: [15] G. Mayor, J. Suñer, and J. Torrens: Sklar’s Theorem in finite settings.IEEE Trans. Fuzzy Systems 15 (2007), 410–416.
Reference: [16] R. Mesiar: Discrete copulas – what they are.In: Prof. Joint EUSFLAT-LFA 2005 (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930.
Reference: [17] R. B. Nelsen: An Introduction to Copulas.Second edition. Springer, New York 2006. Zbl 1152.62030, MR 2197664
Reference: [18] R. B. Nelsen: Extremes of nonexchangeability.Statist. Papers 48 (2007), 329–336. Zbl 1110.62071, MR 2295821
Reference: [19] B. Schweizer and A. Sklar: Probabilistic Metric Spaces.North-Holland, New York 1983. MR 0790314
.

Files

Files Size Format View
Kybernetika_46-2010-1_10.pdf 649.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo