Previous |  Up |  Next

Article

Title: Asymptotic behaviour of a BIPF algorithm with an improper target (English)
Author: Asci, Claudio
Author: Piccioni, Mauro
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 2
Year: 2009
Pages: 169-188
Summary lang: English
.
Category: math
.
Summary: The BIPF algorithm is a Markovian algorithm with the purpose of simulating certain probability distributions supported by contingency tables belonging to hierarchical log-linear models. The updating steps of the algorithm depend only on the required expected marginal tables over the maximal terms of the hierarchical model. Usually these tables are marginals of a positive joint table, in which case it is well known that the algorithm is a blocking Gibbs Sampler. But the algorithm makes sense even when these marginals do not come from a joint table. In this case the target distribution of the algorithm is necessarily improper. In this paper we investigate the simplest non trivial case, i. e. the $2\times2\times2$ hierarchical interaction. Our result is that the algorithm is asymptotically attracted by a limit cycle in law. (English)
Keyword: log-linear models
Keyword: marginal problem
Keyword: null Markov chains
MSC: 60J05
MSC: 60J22
MSC: 62F15
MSC: 62H17
MSC: 65C40
idZBL: Zbl 1170.60326
idMR: MR2518147
.
Date available: 2010-06-02T18:26:13Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140071
.
Reference: [1] D. Z. Albert: Quantum Mechanics and Experience.Harvard College, Cambridge 1992. MR 1221080
Reference: [2] C. Asci, G. Letac, and M. Piccioni: Beta-hypergeometric distributions and random continued fractions.Statist. Probab. Lett. 78 (2008), 1711–1721. MR 2453912
Reference: [3] C. Asci and M. Piccioni: The IPF algorithm when the marginal problem is unsolvable: the simplest case.Kybernetika 39 (2003), 731–737. MR 2035647
Reference: [4] C. Asci and M. Piccioni: Functionally compatible local characteristics for the local specification of priors in graphical models.Scand. J. Statist. 34 (2007), 829–840. MR 2396941
Reference: [5] I. Csiszár: I-divergence geometry of probability distributions and minimization problems.Ann. Probab. 3 (1975), 146–158. MR 0365798
Reference: [6] A. P. Dawid and S. L. Lauritzen: Hyper-Markov laws in the statistical analysis of decomposable graphical models.Ann. Statist. 21 (1993), 1272–1317. MR 1241267
Reference: [7] D. A. van Dyk and X. Meng: The art of data augmentation.With discussions, and a rejoinder by the authors. J. Comput. Graph. Statist. 10 (2001), 1–111. MR 1936358
Reference: [8] A. Einstein, B. Podolsky, and N. Rosen: Can the quantum-mechanical description of physical reality be considered complete? Phys.Rev. 47 (1935), 777–780.
Reference: [9] A. Gelman, J. B. Carlin, D. B. Rubin, and H. S. Stern: Bayesian Data Analysis.Chapman and Hall, London 1995. MR 1385925
Reference: [10] J. P. Hobert and G. Casella: Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors.J. Comput. Graph. Statist. 7 (1998), 42–60. MR 1628268
Reference: [11] S. L. Lauritzen: Graphical Models.Clarendon Press, Oxford 1996. Zbl 1055.62126, MR 1419991
Reference: [12] S. L. Lauritzen and T. S. Richardson: Chain graph models and their causal interpretations (with discussion).J. Roy. Statist. Soc. Ser. B 64 (2002), 321–348. MR 1924296
Reference: [13] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability.Springer-Verlag, London 1993. MR 1287609
Reference: [14] M. Piccioni: Independence structure of natural conjugate densities to exponential families and the Gibbs’ sampler.Scand. J. Statist. 27 (2000), 111–127. Zbl 0938.62025, MR 1774047
Reference: [15] E. D. Rainville: Special Functions.MacMillan, New York 1960. Zbl 0231.33001, MR 0107725
Reference: [16] J. L. Schafer: Analysis of Incomplete Multivariate Data.Chapman and Hall, London 1997. Zbl 0997.62510, MR 1692799
Reference: [17] R. L. Tweedie: R-theory for Markov chains on a general state space I, II.Ann. Probab. 2 (1974), 840–878. MR 0368151
Reference: [18] D. Williams: Weighing the Odds.Cambridge University Press, Cambridge 2001. Zbl 0984.62001, MR 1854128
.

Files

Files Size Format View
Kybernetika_45-2009-2_1.pdf 1.060Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo