Previous |  Up |  Next


chain graph; essential graph; factorisation equivalence; feasible merging components; legal merging components; strong equivalence
In this paper we study two operations of merging components in a chain graph, which appear to be elementary operations yielding an equivalent graph in the respective sense. At first, we recall basic results on the operation of feasible merging components, which is related to classic LWF (Lauritzen, Wermuth and Frydenberg) Markov equivalence of chain graphs. These results are used to get a graphical characterisation of factorisation equivalence of classic chain graphs. As another example of the use of this operation, we derive some important invariants of LWF Markov equivalence of chain graphs. Last, we recall analogous basic results on the operation of legal merging components. This operation is related to the so-called strong equivalence of chain graphs, which includes both classic LWF equivalence and alternative AMP (Andersson, Madigan and Perlman) Markov equivalence.
[1] S. A. Andersson, D. Madigan, and M. D. Perlman: An alternative Markov property for chain graphs. In: Uncertainty in Artificial Intelligence, Proc. Twelfth Conference (F. Jensen and E. Horvitz, eds.), Morgan Kaufmann, San Francisco 1996, pp. 40–48. MR 1617123
[2] S. A. Andersson, D. Madigan, and M. D. Perlman: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist. 25 (1997), 505–541. MR 1439312
[3] S. A. Andersson, D. Madigan, and M. D. Perlman: On the Markov equivalence of chain graphs, undirected graphs and acyclic digraphs. Scand. J. Statist. 24 (1997), 81–102. MR 1436624
[4] S. A. Andersson, D. Madigan, and M. D. Perlman: Alternative Markov properties for chain graphs. Scand. J. Statist. 28 (2001), 33–85. MR 1844349
[5] D. M. Chickering: A transformational characterization of equivalent Bayesian network structures. In: Uncertainty in Artificial Intelligence, Proc. Eleventh Conference (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco 1995, pp. 87–98. MR 1615012
[6] M. Frydenberg: The chain graph Markov property. Scand. J. Statist. 17 (1990), 333–353. MR 1096723 | Zbl 0713.60013
[7] S. L. Lauritzen and N. Wermuth: Mixed Interaction Models. Research Report No. R-84-8, Inst. Elec. Sys., University of Aalborg 1984.
[8] S. L. Lauritzen and N. Wermuth: Graphical models for association between variables, some of which are qualitative and some quantitative. Ann. Statist. 17 (1989), 31–57. MR 0981437
[9] S. L. Lauritzen: Graphical Models. Clarendon Press, Oxford 1996. MR 1419991 | Zbl 1055.62126
[10] J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo 1988. MR 0965765 | Zbl 0746.68089
[11] A. Roverato: A unified approach to the characterisation of equivalence classes of DAGs, chain graphs with no flags and chain graphs. Scand. J. Statist. 32 (2005), 295–312. MR 2188675
[12] A. Roverato and M. Studený: A graphical representation of equivalence classes of AMP chain graphs. J. Machine Learning Research 7 (2006), 1045–1078. MR 2274397
[13] Š. Štěpánová: Equivalence of Chain Graphs (in Czech). Diploma Thesis, Charles University, Prague 2003.
[14] M. Studený: A recovery algorithm for chain graphs. Internat. J. Approx. Reasoning 17 (1997), 265–293. MR 1462716
[15] M. Studený: Characterization of essential graphs by means of the operation of legal merging of components. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 12 (2004), 43–62. MR 2058946
[16] M. Studený and J. Vomlel: Transition between graphical and algebraic representatives of Bayesian network models. In: Proc. 2nd European Workshop on Probabilistic Graphical Models (P. Lucas ed.), Leiden 2004, pp. 193–200.
[17] M. Studený: Probabilistic Conditional Independence Structures. Springer-Verlag, London 2005.
[18] T. Verma and J. Pearl: Equivalence and synthesis of causal models. In: Uncertainty in Artificial Intelligence, Proc. Sixth Conference (P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, eds.), North-Holland, Amsterdam 1991, pp. 255–270.
[19] M. Volf and M. Studený: A graphical characterization of the largest chain graphs. Internat. J. Approx. Reasoning 20 (1999), 209–236. MR 1685080
Partner of
EuDML logo