Previous |  Up |  Next

Article

Keywords:
$D$-space; sequential space; $wcs^*$-network; weakly monotonically monolithic space
Summary:
In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a $D$-space. Thus most known conclusions on $D$-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space $X$ is sequential and has a point-countable $wcs^*$-network then $X$ is a $D$-space.
References:
[1] Arhangel'skii A.V.: $D$-spaces and finite unions. Proc. Amer. Math. Soc. 132.7 (2004), 2163–2170. DOI 10.1090/S0002-9939-04-07336-8 | MR 2053991 | Zbl 1045.54009
[2] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and D-spaces. Comment. Math. Univ. Carolin. 43.4 (2002), 653–663. MR 2045787 | Zbl 1090.54017
[3] Borges C.R., Wehrly A.C.: A study of $D$-spaces. Topology Proc. 16 (1991), 7–15. MR 1206448 | Zbl 0787.54023
[4] Burke D.K.: Weak-base and $D$-space. Comment. Math. Univ. Carolin. 48.2 (2007), 281–289. MR 2338096
[5] Buzyakova R.Z.: Hereditary $D$-property of function spaces over compacta. Proc. Amer. Math. Soc. 132.11 (2004), 3433–3439. DOI 10.1090/S0002-9939-04-07472-6 | MR 2073321 | Zbl 1064.54029
[6] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces. Pacific J. Math. 81.2 (1979), 371–377. DOI 10.2140/pjm.1979.81.371 | MR 0547605 | Zbl 0409.54011
[7] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. MR 1039321 | Zbl 0684.54001
[8] Fleissner W.G., Stanley A.M.: D-spaces. Topology Appl. 114.3 (2001), 261–271. DOI 10.1016/S0166-8641(00)00042-0 | MR 1838325 | Zbl 0983.54024
[9] Gruenhage G.: A note on $D$-spaces. Topology Appl. 153 (2006), 229–240. MR 2238727 | Zbl 1101.54029
[10] Gruenhage G.: Generalized metric spaces. in Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan (Eds), North-Holland, Amsterdam, 1984, pp. 423–501. MR 0776629 | Zbl 0794.54034
[11] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers. Pacific J. Math. 113.2 (1984), 303–332. DOI 10.2140/pjm.1984.113.303 | MR 0749538 | Zbl 0561.54016
[12] Lin S.: Point-countable Covers and Sequence-covering Mappings. Chinese Science Press, Beijing, 2002. MR 1939779 | Zbl 1004.54001
[13] Lin S., Liu C.: On spaces with point-countable $cs^*$-networks. Topology Appl. 74 (1996), 51–60. DOI 10.1016/S0166-8641(96)00043-0 | MR 1425925 | Zbl 0869.54036
[14] Lin S., Tanaka Y.: Point-countable $k$-network, closed maps and related results. Topology Appl. 59 (1994), 79–86. DOI 10.1016/0166-8641(94)90101-5 | MR 1293119
[15] Peng L.-X.: The $D$–property of some Lindelöf spaces and related conclusions. Topology Appl. 154 (2007), 469–475. DOI 10.1016/j.topol.2006.06.003 | MR 2278697 | Zbl 1110.54014
[16] Peng L.-X.: A special point-countable family that makes a space to be a $D$-space. Adv. Math. (China) 37.6 (2008), 724–728. MR 2569541
[17] Peng L.-X.: A note on $D$-spaces and infinite unions. Topology Appl. 154 (2007), 2223–2227. DOI 10.1016/j.topol.2007.01.020 | MR 2328005 | Zbl 1133.54012
[18] Steen L.A., Seebach J.A., Jr.: Counterexamples in Topology. second edition, Springer, New York-Heidelberg, 1978. MR 0507446 | Zbl 0386.54001
[19] Tkachuk V.V.: Monolithic spaces and $D$-spaces revised. Topology Appl. 156 (2009), 840–846. DOI 10.1016/j.topol.2008.11.001 | MR 2492968
Partner of
EuDML logo