[1] Arhangel'skii A.V.:
Eberlein compacta. in Encyclopedia of General Topology. (K.P. Hart, J. Nagata, J. Vaughan, eds.), Elsevier Sci. Publ., Amsterdam, 2004, pp. 145–146.
MR 2049453
[2] Arhangel'skii A.V., Hušek M.:
Extensions of topological and semitopological groups and product operations. Comment. Math. Univ. Carolin. 42:1 (2001), 173–186.
MR 1825381
[3] Banakh T., Dimitrova S., Gutik O.:
Embedding the bicyclic semigroup into countably compact topological semigroups. preprint (arXiv:0811.4276).
MR 2729339
[4] Banakh T., Chigogidze A., Fedorchuk V.V.:
On spaces of $\sigma$-additive probability measures. Topology Appl. 133:2 (2003), 139–155.
MR 1997961 |
Zbl 1027.28006
[5] Berglund J., Junghenn H., Milnes P.:
Analysis on Semigroups. Function Spaces, Compactifications, Representations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.
MR 0999922 |
Zbl 0727.22001
[6] Carruth J.H., Hildebrant J.A., Koch R.J.:
The Theory of Topological Semigroups. Marcel Dekker, New York, 1983.
MR 0691307 |
Zbl 0581.22001
[8] Chigogidze A., Fedorchuk V.V.:
Absolute Retracts and Infinite-dimensional Manifolds. Nauka, Moscow, 1992 (in Russian).
MR 1202238 |
Zbl 0762.54017
[9] Hindman N., Strauss D.:
Algebra in the Stone-Čech Compactification. Theory and Applications. de Gruyter Expositions in Mathematics, 27, Walter de Gruyter, Berlin, 1998.
MR 1642231 |
Zbl 0918.22001
[10] Haydon R.:
On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0-dim). Studia Math. 52 (1974), 23–31.
MR 0418025 |
Zbl 0294.46016
[11] Kalenda O.:
Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15:1 (2000), 1–85.
MR 1792980 |
Zbl 0983.46021
[13] Kalenda O., Kubiś W.:
The structure of Valdivia compact lines. preprint (arXiv:0811.4144).
MR 2607079
[14] Megrelishvili M.:
Every semitopological semigroup compactification of the group $H\sb +[0,1]$ is trivial. Semigroup Forum 63:3 (2001), 357–370.
DOI 10.1007/s002330010076 |
MR 1851816
[15] Pestov V., Tkachenko M.: Problem 3.28. in Unsolved Problems of Topological ALgebra, Acad. of Sci. Moldova, Kishinev, “Shtiinca” 1985, p. 18.
[18] Ruppert W.:
Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics, 1079, Springer, Berlin, 1984.
MR 0762985 |
Zbl 0606.22001
[19] Shakhmatov D.:
Compact spaces and their generalizations. in Recent Progress in General Topology (Prague, 1991), 571–640, North-Holland, Amsterdam, 1992.
MR 1229139 |
Zbl 0801.54001
[20] Shapiro L.B.:
The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompactum. Dokl. Akad. Nauk SSSR 228:6 (1976), 1302–1305.
MR 0410635 |
Zbl 0342.54031
[21] Ščepin E.V.:
Functors and uncountable powers of compacta. Uspekhi Mat. Nauk 36 (1981), no. 3(219), 3–62.
MR 0622720
[22] Teleiko A., Zarichnyi M.:
Categorical Topology of Compact Hausdorff Spaces. Monograph Series, 5, VNTL Publishers, L'viv, 1999.
MR 1783651 |
Zbl 1032.54004