Previous |  Up |  Next

Article

Keywords:
topological semigroup; semigroup compactification; inverse spectrum; pseudocompact space; openly factorizable space; openly generated space; Eberlein compact; Corson compact; Valdivia compact
Summary:
We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its Stone-Čech compactification $\beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:S\to Y$ to a second countable space $Y$ can be written as the composition $f=g\circ p$ of an open map $p:X\to Z$ onto a second countable space $Z$ and a map $g:Z\to Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
References:
[1] Arhangel'skii A.V.: Eberlein compacta. in Encyclopedia of General Topology. (K.P. Hart, J. Nagata, J. Vaughan, eds.), Elsevier Sci. Publ., Amsterdam, 2004, pp. 145–146. MR 2049453
[2] Arhangel'skii A.V., Hušek M.: Extensions of topological and semitopological groups and product operations. Comment. Math. Univ. Carolin. 42:1 (2001), 173–186. MR 1825381
[3] Banakh T., Dimitrova S., Gutik O.: Embedding the bicyclic semigroup into countably compact topological semigroups. preprint (arXiv:0811.4276). MR 2729339
[4] Banakh T., Chigogidze A., Fedorchuk V.V.: On spaces of $\sigma$-additive probability measures. Topology Appl. 133:2 (2003), 139–155. MR 1997961 | Zbl 1027.28006
[5] Berglund J., Junghenn H., Milnes P.: Analysis on Semigroups. Function Spaces, Compactifications, Representations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. MR 0999922 | Zbl 0727.22001
[6] Carruth J.H., Hildebrant J.A., Koch R.J.: The Theory of Topological Semigroups. Marcel Dekker, New York, 1983. MR 0691307 | Zbl 0581.22001
[7] Engelking R.: General Topology. PWN, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[8] Chigogidze A., Fedorchuk V.V.: Absolute Retracts and Infinite-dimensional Manifolds. Nauka, Moscow, 1992 (in Russian). MR 1202238 | Zbl 0762.54017
[9] Hindman N., Strauss D.: Algebra in the Stone-Čech Compactification. Theory and Applications. de Gruyter Expositions in Mathematics, 27, Walter de Gruyter, Berlin, 1998. MR 1642231 | Zbl 0918.22001
[10] Haydon R.: On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0-dim). Studia Math. 52 (1974), 23–31. MR 0418025 | Zbl 0294.46016
[11] Kalenda O.: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15:1 (2000), 1–85. MR 1792980 | Zbl 0983.46021
[12] Kalenda O.: Natural examples of Valdivia compact spaces. J. Math. Anal. Appl. 340:1 (2008), 81–101. DOI 10.1016/j.jmaa.2007.07.069 | MR 2376139 | Zbl 1166.46007
[13] Kalenda O., Kubiś W.: The structure of Valdivia compact lines. preprint (arXiv:0811.4144). MR 2607079
[14] Megrelishvili M.: Every semitopological semigroup compactification of the group $H\sb +[0,1]$ is trivial. Semigroup Forum 63:3 (2001), 357–370. DOI 10.1007/s002330010076 | MR 1851816
[15] Pestov V., Tkachenko M.: Problem 3.28. in Unsolved Problems of Topological ALgebra, Acad. of Sci. Moldova, Kishinev, “Shtiinca” 1985, p. 18.
[16] Reznichenko E.A.: Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology Appl. 59:3 (1994), 233–244. DOI 10.1016/0166-8641(94)90021-3 | MR 1299719 | Zbl 0835.22001
[17] Reznichenko E.A., Uspenskij V.V.: Pseudocompact Mal'tsev spaces. Topology Appl. 86:1 (1998), 83–104. DOI 10.1016/S0166-8641(97)00124-7 | MR 1619345 | Zbl 0938.54027
[18] Ruppert W.: Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics, 1079, Springer, Berlin, 1984. MR 0762985 | Zbl 0606.22001
[19] Shakhmatov D.: Compact spaces and their generalizations. in Recent Progress in General Topology (Prague, 1991), 571–640, North-Holland, Amsterdam, 1992. MR 1229139 | Zbl 0801.54001
[20] Shapiro L.B.: The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompactum. Dokl. Akad. Nauk SSSR 228:6 (1976), 1302–1305. MR 0410635 | Zbl 0342.54031
[21] Ščepin E.V.: Functors and uncountable powers of compacta. Uspekhi Mat. Nauk 36 (1981), no. 3(219), 3–62. MR 0622720
[22] Teleiko A., Zarichnyi M.: Categorical Topology of Compact Hausdorff Spaces. Monograph Series, 5, VNTL Publishers, L'viv, 1999. MR 1783651 | Zbl 1032.54004
Partner of
EuDML logo