Previous |  Up |  Next

Article

Title: On the support of Fourier transform of weighted distributions (English)
Author: Guzmán-Partida, Martha
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 1
Year: 2010
Pages: 57-66
Summary lang: English
.
Category: math
.
Summary: We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region $x_{1}\geq 0$ and $x_{2}\geq 0$. (English)
Keyword: $S'$-convolution
Keyword: weighted distribution spaces
Keyword: Fourier transform
MSC: 46F05
MSC: 46F10
MSC: 46F12
idZBL: Zbl 1224.46074
idMR: MR2666080
.
Date available: 2010-05-21T12:32:32Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140086
.
Reference: [1] Alvarez J., Carton-Lebrun C.: Optimal spaces for the $\mathcal{S}'$-convolution with the Marcel Riesz kernels and the $n$-dimensional Hilbert kernel.in Analysis of Divergence: Control and Management of Divergent Processes, W.O. Bray and Č.V. Stanojević (eds.), Birkhäuser, Boston, 1999, pp. 233–248. MR 1731269
Reference: [2] Alvarez J., Guzmán-Partida M.: The $\mathcal{S}'$-convolution with singular kernels in the euclidean case and the product domain case.J. Math. Anal. Appl. 270 (2002), 405–434. MR 1915708, 10.1016/S0022-247X(02)00078-1
Reference: [3] Barros-Neto J.: An introduction to the theory of distributions.Marcel Dekker, New York, 1973. Zbl 0512.46040, MR 0461128
Reference: [4] Dierolf P., Voigt J.: Convolution and $\mathcal{S}'$-convolution of distributions.Collect. Math. 29 (1978), 185–196. MR 0565276
Reference: [5] Guzmán-Partida M.: On $n$-dimensional Hilbert transform of weighted distributions.Integral Transforms Spec. Funct. 19 (2008), no. 4, 235–248. MR 2412225, 10.1080/10652460701754778
Reference: [6] Hirata Y., Ogata H.: On the exchange formula for distributions.J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147–152. Zbl 0088.08603, MR 0110014
Reference: [7] Mikusiński J.: Criteria of the existence and of the associativity of the product of distributions.Studia Math. 21 (1962), 253–259. MR 0141986
Reference: [8] Pandey J.N., Singh O.P.: Characterization of functions with Fourier transform supported on orthants.J. Math. Anal. Appl. 185 (1994), 438–463. Zbl 0812.42005, MR 1283069, 10.1006/jmaa.1994.1260
Reference: [9] Shiraishi R.: On the definition of convolutions for distributions.J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19–32. Zbl 0091.28601, MR 0114122
Reference: [10] Shiraishi R., Itano M.: On the multiplicative products of distributions.J. Sci. Hiroshima Univ. Ser. A-I Math. 28 (1964), 223–235. Zbl 0141.31901, MR 0218896
Reference: [11] Schwartz L.: Causalité et analyticité.An. Acad. Brasil. Ci. 34 (1962) 13–21. Zbl 0109.33903
Reference: [12] Schwartz L.: Théorie des distributions.Hermann, Paris, 1966. Zbl 0962.46025, MR 0209834
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-1_6.pdf 232.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo