Previous |  Up |  Next

Article

Title: Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost (English)
Author: Putten, Roberto van der
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 1
Year: 2010
Pages: 67-83
Summary lang: English
.
Category: math
.
Summary: In the setting of the optimal transportation problem we provide some conditions which ensure the existence and the uniqueness of the optimal map in the case of cost functions satisfying mild regularity hypothesis and no convexity or concavity assumptions. (English)
Keyword: mass transport problem
Keyword: measurable selections
Keyword: degree theory
MSC: 49J30
MSC: 54C60
idZBL: Zbl 1224.49008
idMR: MR2666081
.
Date available: 2010-05-21T12:34:33Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140079
.
Reference: [1] Abdellaoui T., Heinich H.: Sur la distance de deux lois dans le cas vectoriel.C.R. Acad. Sci. Paris Sér. I Math. 319 (1994), 397–400. Zbl 0808.60008, MR 1289319
Reference: [2] Alberti G., Ambrosio L.: A geometric approach to monotone functions in $\Bbb R^n$.Math. Z. (1999), 230 259–316. MR 1676726
Reference: [3] Ambrosio L.: Lecture notes on optimal transport problems.Mathematical Aspects of Evolving Interfaces (P. Colli and J.F. Rodrigues, Eds.), Lecture Notes in Mathematics, 1812, Springer, Berlin, 2003, pp. 1–52. Zbl 1047.35001, MR 2011032
Reference: [4] Ambrosio L., Gigli N., Savaré G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures.Second Edition, Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel, 2008. MR 2401600
Reference: [5] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Rational Mech. Anal. 63 (1978), 337–403. MR 0475169, 10.1007/BF00279992
Reference: [6] Ball J.M.: Global invertibility of Sobolev functions and the interpenetration of matter.Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 315–328. Zbl 0478.46032, MR 0616782
Reference: [7] Bolton P., Dewatripont M.: Contract Theory.The MIT Press Cambridge (2005).
Reference: [8] Brenier Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs.C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808. Zbl 0652.26017, MR 0923203
Reference: [9] Brenier Y.: Extended Monge-Kantorovich theory.Optimal Transportation and Applications (L.A. Caffarelli and S. Salsa, Eds.), Lecture Notes in Mathematics, 1813, Springer, Berlin, 2003, pp. 91–121. Zbl 1064.49036, MR 2006306
Reference: [10] Brezis H.: Analyse Fonctionelle.Masson Paris (1983). MR 0697382
Reference: [11] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control.Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, 2004. Zbl 1095.49003, MR 2041617
Reference: [12] Carlier G.: A general existence result for the principal-agent problem with adverse selection.J. Math. Econom. 35 (2001), 129–150. Zbl 0972.91068, MR 1817791, 10.1016/S0304-4068(00)00057-4
Reference: [13] Carlier G.: Duality and existence for a class of mass transportation problems and economic applications.Adv. Math. Econom. 5 (2003), 1–21. Zbl 1176.90409, MR 2160899, 10.1007/978-4-431-53979-7_1
Reference: [14] Carlier G., Dana R.A.: Rearrangement inequalities in non-convex insurance model.J. Math. Econom. 41 (2005), 483–503. MR 2143822, 10.1016/j.jmateco.2004.12.004
Reference: [15] Carlier G., Jimenez Ch.: On Monge's problem for Bregman-like cost function.J. Convex Anal. (2007), 14 647–656. MR 2341308
Reference: [16] Clarke F.H.: Optimization and Nonsmooth Analysis.Wiley-Interscience New York (1983). Zbl 0582.49001, MR 0709590
Reference: [17] Cuesta-Albertos J.A., Matrán C.: Notes on the Wasserstein metric in Hilbert spaces.Ann. Probab. 17 (1989), 1264–1276. MR 1009457, 10.1214/aop/1176991269
Reference: [18] Evans L.C., Gangbo W.: Differential equation methods for the Monge-Kantorovich mass transfer problem.Mem. Amer. Math. Soc 137 (1999), 653. MR 1464149
Reference: [19] Fathi A., Figalli A.: Optimal transportation on non-compact manifold.Israel J. Math., to appear.
Reference: [20] Gangbo W., McCann R.J.: Optimal maps in Monge's mass transport problem.C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1653–1658. Zbl 0858.49002, MR 1367824
Reference: [21] Gangbo W., McCann R.J.: The geometry of optimal transportation.Acta Math. 177 (1996), 113–161. Zbl 0887.49017, MR 1440931, 10.1007/BF02392620
Reference: [22] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations.I Springer Berlin (1998). MR 1645086
Reference: [23] Kantorovich L.V.: On a problem of Monge.Uspekhi Mat. Nauk SSSR 3 (1948), 225–226.
Reference: [24] Kellerer H.G.: Duality theorems for marginal problems.Z. Wahrsch. Verw. Gebiete 67 (1984), 399–432. Zbl 0535.60002, MR 0761565, 10.1007/BF00532047
Reference: [25] Laffont J.J., Matimort D.: The Theory of Incentives: The Agent-Principal Model.Princeton University Press Princeton (2001).
Reference: [26] Levin V.L.: Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem.Set-Valued Anal. 7 (1999), 7–32. Zbl 0934.54013, MR 1699061, 10.1023/A:1008753021652
Reference: [27] Ma X.N., Trudinger N., Wang X.J.: Regularity of potential functions of the optimal transportation problem.Arch. Rational Mech. Anal. 177 (2005), 151–183. Zbl 1072.49035, MR 2188047, 10.1007/s00205-005-0362-9
Reference: [28] Monge G.: Memoire sur la Theorie des Déblais et des Remblais.Histoire de l'Acad. des Science de Paris, 1781.
Reference: [29] Müller S., Qi T., Yan B.S.: On a new class of elastic deformations not allowing for cavitation.Ann. Inst. H. Poincaré 177 (1996), 113–161.
Reference: [30] Plakhov A.Yu.: Exact solutions of the one-dimensional Monge-Kantorovich problem.Mat. Sb. 195 9 (2004), 57–74; {\it II}, Sb. Math. 195 no. 9 (2004), 1291–1307. Zbl 1080.49030, MR 2122369, 10.1070/SM2004v195n09ABEH000845
Reference: [31] Rachev S.T., Rüschendorf L.R.: Mass Transportation Problem.Springer Berlin (1998).
Reference: [32] Repovš D., Semenov P.V.: Continuous Selections of Multivalued Mappings.Kluver Academic Dordrecht (1998). MR 1659914
Reference: [33] Rochet J.C.: A necessary and sufficient condition for rationalizability in a quasi-linear context.J. Math. Econom. 16 (1987), 191–200. MR 0902976, 10.1016/0304-4068(87)90007-3
Reference: [34] Rüschendorf L., Uckelmann L.: Numerical and analytical results for the transportation problem of Monge-Kantorovich.Metrika 51 3 (2000), 245–258. MR 1795372, 10.1007/s001840000052
Reference: [35] Sudakov V.N.: Geometric problems in the theory of infinite-dimensional probability distributions.Proc. Steklov Inst. Math. 141 (1979), 1–178. MR 0530375
Reference: [36] Šverák V.: Regularity properties of deformation with finite energy.Arch. Rational Mech. Anal. 100 (1988), 105–127. MR 0913960, 10.1007/BF00282200
Reference: [37] Trudinger N.S., Wang X.J.: On the second boundary problem for Monge-Ampère type equations and optimal transportation.Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 1 143–174; archived online at arxiv.org/abs/math.AP/0601086. MR 2512204
Reference: [38] van der Putten R.: Sul lemma dei valori critici e la formula della coarea.Boll. U.M.I. (7) 6-B (1992), 561–578. MR 1191953
Reference: [39] Villani C.: Optimal Transport, Old and New.Grundlehren der Mathematischen Wissenschaften, 338, Springer, Berlin, 2009; archived online at www.umpa.ens-lyon.fr/$\sim ${\tt cvillani/Cedrif/B07D.StFlour.pdf}. Zbl 1156.53003, MR 2459454
Reference: [40] Ziemer W.P.: Weakly Differentiable Functions.Graduate Texts in Mathematics, 120, Springer, New York, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-1_7.pdf 282.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo