Previous |  Up |  Next

Article

Title: Enveloping algebras of Malcev algebras (English)
Author: Bremner, Murray R.
Author: Hentzel, Irvin R.
Author: Peresi, Luiz A.
Author: Tvalavadze, Marina V.
Author: Usefi, Hamid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 157-174
Summary lang: English
.
Category: math
.
Summary: We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple Malcev algebra is isomorphic to the 8-dimensional division algebra of real octonions. We conclude with some brief remarks on tangent algebras of analytic Bol loops and monoassociative loops. (English)
Keyword: Malcev algebras
Keyword: universal enveloping algebras
Keyword: universal alternative envelopes
Keyword: differential operators
Keyword: Bol algebras
Keyword: analytic loops
MSC: 17B35
MSC: 17D05
MSC: 17D10
MSC: 17D15
MSC: 20N05
idZBL: Zbl 1224.17034
idMR: MR2682471
.
Date available: 2010-05-21T12:41:12Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140096
.
Reference: [1] Akivis M.A., Goldberg V.V.: Local algebras of a differentiable quasigroup.Bull. Amer. Math. Soc. 43 (2006), 207–226. MR 2216110, 10.1090/S0273-0979-06-01094-9
Reference: [2] Akivis M.A., Shelekhov A.M.: Fourth-order alternators of a local analytic loop and three-webs of multidimensional surfaces.Soviet Math. 33 (1989), 13–18. MR 1008142
Reference: [3] Bremner M.R., Hentzel I.R., Peresi L.A., Usefi H.: Universal enveloping algebras of the four-dimensional Malcev algebra.Contemp. Math. 483 (2009), 73–89. MR 2497952, 10.1090/conm/483/09436
Reference: [4] Bremner M.R., Usefi H.: Enveloping algebras of the nilpotent Malcev algebra of dimension five.Algebr. Represent. Theory(to appear). MR 2660854
Reference: [5] Carlsson R.: Malcev-Moduln.J. Reine Angew. Math. 281 (1976), 199–210. Zbl 0326.17010, MR 0393158
Reference: [6] Elduque A.: On maximal subalgebras of central simple Malcev algebras.J. Algebra 103 (1986), 216–227. Zbl 0592.17014, MR 0860701, 10.1016/0021-8693(86)90181-X
Reference: [7] Elduque A., Shestakov I.P.: Irreducible non-Lie modules for Malcev superalgebras.J. Algebra 173 (1995), 622–637. Zbl 0824.17005, MR 1327872, 10.1006/jabr.1995.1106
Reference: [8] Gavrilov A.V.: Malcev extensions.Southeast Asian Bull. Math.(to appear). MR 2657651
Reference: [9] Kuzmin E.N.: Malcev algebras and their representations.Algebra Logika 7 (1968), 48–69. MR 0252468
Reference: [10] Kuzmin E.N.: Malcev algebras of dimension five over a field of characteristic zero.Algebra Logika 9 (1971), 691–700. MR 0283033
Reference: [11] Kuzmin E.N., Shestakov I.P.: Nonassociative structures.pages 197–280 of Algebra VI, Encyclopaedia of Mathematical Sciences 57, Springer, Berlin, 1995. MR 1360006
Reference: [12] Malcev A.I.: Analytic loops.Mat. Sbornik N.S. 36/78 (1955), 569–576. MR 0069190
Reference: [13] Mikheev P.O.: On a problem of Chern-Akivis-Shelekhov on hexagonal three-webs.Aequationes Math. 51 (1996), 1–11. Zbl 0845.53011, MR 1372779, 10.1007/BF01831136
Reference: [14] Mikheev P.O., Sabinin L.V.: Infinitesimal theory of local analytic loops.Soviet Math. Dokl. 36 (1988), 545–548. Zbl 0659.53018, MR 0924255
Reference: [15] Morandi P.J., Pérez-Izquierdo J.M., Pumplün S.: On the tensor product of composition algebras.J. Algebra 243 (2001), 41–68. MR 1851653, 10.1006/jabr.2001.8773
Reference: [16] Pérez-Izquierdo J.M.: An envelope for Bol algebras.J. Algebra 284 (2005), 480–493. MR 2114566, 10.1016/j.jalgebra.2004.09.038
Reference: [17] Pérez-Izquierdo J.M.: Algebras, hyperalgebras, nonassociative bialgebras and loops.Advances Math. 208 (2007), 834–876. MR 2304338, 10.1016/j.aim.2006.04.001
Reference: [18] Pérez-Izquierdo J.M., Shestakov I.P.: An envelope for Malcev algebras.J. Algebra 272 (2004), 379–393. MR 2029038, 10.1016/S0021-8693(03)00389-2
Reference: [19] Sagle A.A.: Malcev algebras.Trans. Amer. Math. Soc. 101 (1961), 426–458. Zbl 0136.02103, MR 0143791, 10.1090/S0002-9947-1961-0143791-X
Reference: [20] Shelekhov A.M.: Classification of multidimensional three-webs according to closure conditions.J. Soviet Math. 55 (1991), 2140–2168. Zbl 0705.53014, 10.1007/BF01095908
Reference: [21] Shestakov I.P.: Speciality problem for Malcev algebras and Poisson Malcev algebras.pages 365–371 of Nonassociative Algebra and its Applications, Dekker, New York, 2000. Zbl 0971.17019, MR 1755366
Reference: [22] Shestakov I.P.: Speciality and deformations of algebras.pages 345–356 of Algebra, de Gruyter, Berlin, 2000. Zbl 1027.17001, MR 1754680
Reference: [23] Shestakov I.P., Umirbaev U.U.: Free Akivis algebras, primitive elements, and hyperalgebras.J. Algebra 250 (2002), 533–548. Zbl 0993.17002, MR 1899864, 10.1006/jabr.2001.9123
Reference: [24] Shestakov I.P., Zhelyabin V.N.: The Chevalley and Kostant theorems for Malcev algebras.Algebra Logika 46 (2007), 560–584. MR 2378631
Reference: [25] Zhevlakov K.A., Slinko A.M., Shestakov I.P., Shirshov A.I.: Rings That Are Nearly Associative.Academic Press, New York, 1982. Zbl 0487.17001, MR 0668355
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_2.pdf 296.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo