Previous |  Up |  Next

Article

Title: Overlapping latin subsquares and full products (English)
Author: Browning, Joshua M.
Author: Vojtěchovský, Petr
Author: Wanless, Ian M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 175-184
Summary lang: English
.
Category: math
.
Summary: We derive necessary and sufficient conditions for there to exist a latin square of order $n$ containing two subsquares of order $a$ and $b$ that intersect in a subsquare of order $c$. We also solve the case of two disjoint subsquares. We use these results to show that: (a) A latin square of order $n$ cannot have more than $\frac nm{n\choose h}/{m\choose h}$ subsquares of order $m$, where $h=\lceil(m+1)/2\rceil$. Indeed, the number of subsquares of order $m$ is bounded by a polynomial of degree at most $\sqrt{2m}+2$ in $n$. (b) For all $n\ge 5$ there exists a loop of order $n$ in which every element can be obtained as a product of all $n$ elements in some order and with some bracketing. (English)
Keyword: latin square
Keyword: latin subsquare
Keyword: overlapping latin subsquares
Keyword: full product in loops
MSC: 05B15
MSC: 20N05
idZBL: Zbl 1224.05061
idMR: MR2682472
.
Date available: 2010-05-21T12:41:39Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140097
.
Reference: [1] Dénes J., Hermann P.: On the product of all elements in a finite group.Ann. Discrete Math. 15 (1982), 105–109. MR 0772587
Reference: [2] Heinrich K., Wallis W.D.: The maximum number of intercalates in a latin square.Lecture Notes in Math. 884 (1981), 221–233. Zbl 0475.05014, MR 0641250, 10.1007/BFb0091822
Reference: [3] McKay B.D., Wanless I.M.: Most latin squares have many subsquares.J. Combin. Theory Ser. A 86 (1999), 323–347. Zbl 0948.05014, MR 1685535, 10.1006/jcta.1998.2947
Reference: [4] Pula K.: Products of all elements in a loop and a framework for non-associative analogues of the Hall-Paige conjecture.Electron. J. Combin. 16 (2009), R57. MR 2505099
Reference: [5] Ryser H.J.: A combinatorial theorem with an application to latin rectangles.Proc. Amer. Math. Soc. 2 (1951), 550–552. Zbl 0043.01202, MR 0042361, 10.1090/S0002-9939-1951-0042361-0
Reference: [6] van Rees G.H.J.: Subsquares and transversals in latin squares.Ars Combin. 29B (1990), 193–204. Zbl 0718.05014, MR 1412875
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_3.pdf 230.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo