Title:
|
On the combinatorics of Kac's asymmetry function (English) |
Author:
|
Green, R. M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
217-235 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We use categories to recast the combinatorial theory of full heaps, which are certain labelled partially ordered sets that we introduced in previous work. This gives rise to a far simpler set of definitions, which we use to outline a combinatorial construction of the so-called loop algebras associated to affine untwisted Kac--Moody algebras. The finite convex subsets of full heaps are equipped with a statistic called parity, and this naturally gives rise to Kac's asymmetry function. The latter is a key ingredient in understanding the (integer) structure constants of simple Lie algebras with respect to certain Chevalley bases, which also arise naturally in the context of heaps. (English) |
Keyword:
|
Lie algebra |
Keyword:
|
Chevalley basis |
Keyword:
|
heap |
MSC:
|
06A07 |
MSC:
|
17B20 |
MSC:
|
17B67 |
idZBL:
|
Zbl 1224.17032 |
idMR:
|
MR2682475 |
. |
Date available:
|
2010-05-21T12:46:03Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140101 |
. |
Reference:
|
[1] Carter R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters.Wiley, New York, 1985. Zbl 0567.20023, MR 0794307 |
Reference:
|
[2] Diekert V., Rozenberg G. (eds.): The Book of Traces.World Scientific, Singapore, 1995. MR 1478992 |
Reference:
|
[3] Green R.M.: Full heaps and representations of affine Kac–Moody algebras.Internat. Electron. J. Algebra 2 (2007), 138–188. Zbl 1134.17010, MR 2320733 |
Reference:
|
[4] Green R.M.: Full heaps and representations of affine Weyl groups.Internat. Electron. J. Algebra 3 (2008), 1–42. Zbl 1184.20037, MR 2369402 |
Reference:
|
[5] Green R.M.: Combinatorics of minuscule representations.in preparation. |
Reference:
|
[6] Kac V.G.: Infinite Dimensional Lie Algebras.third edition, Cambridge University Press, Cambridge, 1990. Zbl 0925.17021, MR 1104219 |
Reference:
|
[7] Kashiwara M.: On crystal bases of the $q$-analogue of universal enveloping algebras.Duke Math. J. 63 (1991), 465–516. Zbl 0739.17005, MR 1115118, 10.1215/S0012-7094-91-06321-0 |
Reference:
|
[8] Littelmann P.: A Littlewood–Richardson type rule for symmetrizable Kac–Moody algebras.Invent. Math. 116 (1994), 329–346. MR 1253196, 10.1007/BF01231564 |
Reference:
|
[9] McGregor-Dorsey Z.S.: Full heaps over Dynkin diagrams of type $\widetilde{A}$.M.A. thesis, University of Colorado at Boulder, 2008. |
Reference:
|
[10] Stembridge J.R.: Minuscule elements of Weyl groups.J. Algebra 235 (2001), 722–743. Zbl 0973.17034, MR 1805477, 10.1006/jabr.2000.8488 |
Reference:
|
[11] Vavilov N.A.: Can one see the signs of structure constants?.St Petersburg Math. J. 19 (2008), 519–543. MR 2381932, 10.1090/S1061-0022-08-01008-X |
Reference:
|
[12] Viennot G.X.: Heaps of pieces, I: basic definitions and combinatorial lemmas.in Combinatoire Énumérative (ed. G. Labelle and P. Leroux), Springer, Berlin, 1986, pp. 321–350. Zbl 0792.05012, MR 0927773 |
Reference:
|
[13] Wildberger N.J.: A combinatorial construction for simply laced Lie algebras.Adv. Appl. Math. 30 (2003), 385–396. Zbl 1023.17015, MR 1979800, 10.1016/S0196-8858(02)00541-9 |
. |