Previous |  Up |  Next

Article

Title: On the combinatorics of Kac's asymmetry function (English)
Author: Green, R. M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 217-235
Summary lang: English
.
Category: math
.
Summary: We use categories to recast the combinatorial theory of full heaps, which are certain labelled partially ordered sets that we introduced in previous work. This gives rise to a far simpler set of definitions, which we use to outline a combinatorial construction of the so-called loop algebras associated to affine untwisted Kac--Moody algebras. The finite convex subsets of full heaps are equipped with a statistic called parity, and this naturally gives rise to Kac's asymmetry function. The latter is a key ingredient in understanding the (integer) structure constants of simple Lie algebras with respect to certain Chevalley bases, which also arise naturally in the context of heaps. (English)
Keyword: Lie algebra
Keyword: Chevalley basis
Keyword: heap
MSC: 06A07
MSC: 17B20
MSC: 17B67
idZBL: Zbl 1224.17032
idMR: MR2682475
.
Date available: 2010-05-21T12:46:03Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140101
.
Reference: [1] Carter R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters.Wiley, New York, 1985. Zbl 0567.20023, MR 0794307
Reference: [2] Diekert V., Rozenberg G. (eds.): The Book of Traces.World Scientific, Singapore, 1995. MR 1478992
Reference: [3] Green R.M.: Full heaps and representations of affine Kac–Moody algebras.Internat. Electron. J. Algebra 2 (2007), 138–188. Zbl 1134.17010, MR 2320733
Reference: [4] Green R.M.: Full heaps and representations of affine Weyl groups.Internat. Electron. J. Algebra 3 (2008), 1–42. Zbl 1184.20037, MR 2369402
Reference: [5] Green R.M.: Combinatorics of minuscule representations.in preparation.
Reference: [6] Kac V.G.: Infinite Dimensional Lie Algebras.third edition, Cambridge University Press, Cambridge, 1990. Zbl 0925.17021, MR 1104219
Reference: [7] Kashiwara M.: On crystal bases of the $q$-analogue of universal enveloping algebras.Duke Math. J. 63 (1991), 465–516. Zbl 0739.17005, MR 1115118, 10.1215/S0012-7094-91-06321-0
Reference: [8] Littelmann P.: A Littlewood–Richardson type rule for symmetrizable Kac–Moody algebras.Invent. Math. 116 (1994), 329–346. MR 1253196, 10.1007/BF01231564
Reference: [9] McGregor-Dorsey Z.S.: Full heaps over Dynkin diagrams of type $\widetilde{A}$.M.A. thesis, University of Colorado at Boulder, 2008.
Reference: [10] Stembridge J.R.: Minuscule elements of Weyl groups.J. Algebra 235 (2001), 722–743. Zbl 0973.17034, MR 1805477, 10.1006/jabr.2000.8488
Reference: [11] Vavilov N.A.: Can one see the signs of structure constants?.St Petersburg Math. J. 19 (2008), 519–543. MR 2381932, 10.1090/S1061-0022-08-01008-X
Reference: [12] Viennot G.X.: Heaps of pieces, I: basic definitions and combinatorial lemmas.in Combinatoire Énumérative (ed. G. Labelle and P. Leroux), Springer, Berlin, 1986, pp. 321–350. Zbl 0792.05012, MR 0927773
Reference: [13] Wildberger N.J.: A combinatorial construction for simply laced Lie algebras.Adv. Appl. Math. 30 (2003), 385–396. Zbl 1023.17015, MR 1979800, 10.1016/S0196-8858(02)00541-9
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_7.pdf 1.593Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo