Previous |  Up |  Next

Article

Title: Nonassociativity in VOA theory and finite group theory (English)
Author: Griess, Robert L., Jr.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 237-244
Summary lang: English
.
Category: math
.
Summary: We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists. (English)
Keyword: nonassociative algebra
Keyword: nonassociative commutative algebra
Keyword: groups of Lie type
Keyword: sporadic groups
Keyword: vertex operator algebras
Keyword: lattice type vertex operator algebras
Keyword: axioms
Keyword: $(B,N)$-pair
Keyword: monster
Keyword: $2A$-involutions
Keyword: Jordan algebra
Keyword: pairwise orthogonal idempotents
Keyword: $E_8$
Keyword: $E_6$
Keyword: polynomial identity
MSC: 17A01
MSC: 17B69
MSC: 20D06
MSC: 20D08
idZBL: Zbl 1224.17033
idMR: MR2682476
.
Date available: 2010-05-21T12:46:28Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140102
.
Reference: [1] Cohen A.M., Griess R.L., Jr.: On finite simple subgroups of the complex Lie group of type $E_8$.The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367–405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987. . MR 0933426
Reference: [2] Ashihara T., Miyamoto M.: Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras.J. Algebra 321 (2009), no. 6, 1593–1599. MR 2498258
Reference: [3] Cohen A.M., Wales D.B.: Finite subgroups of $F\sb 4(C)$ and $E\sb 6(C)$.Proc. London Math. Soc. (3) 74 (1997), no. 1, 105–150. MR 1416728
Reference: [4] Conway J.H.: A simple construction for the Fischer-Griess monster group.Invent. Math. 79 (1985), no. 3, 513–540. Zbl 0564.20010, MR 0782233
Reference: [5] Dong C., Nagatomo K.: Automorphism groups and twisted modules for lattice vertex operator algebras.in Recent Developments in Quantum Affine Algebras and Related Topics, Contemp. Math., 248, pp. 117–133, Amer. Math. Soc., Providence, RI, 1999. Zbl 0953.17014, MR 1745258
Reference: [6] Dong C., Griess R.L., Jr.: Rank one lattice type vertex operator algebras and their automorphism groups.J. Algebra 208 (1998), 262–275. q-alg/9710017. Zbl 1028.17019, MR 1644007
Reference: [7] Dong C., Griess, R.L., Jr., Ryba A.J.E.: Rank one lattice type vertex operator algebras and their automorphism groups.II: E-series, J. Algebra 217 (1999), 701–710. Zbl 1028.17019, MR 1700522
Reference: [8] Frenkel I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster.Pure and Applied Math., 134, Academic Press, Boston, 1988. Zbl 0674.17001, MR 0996026
Reference: [9] Gebert R.W.: Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebra.Internat. J. Modern Phys. A 8 (1993), no. 31, 5441–5503. Zbl 0860.17039, MR 1248070
Reference: [10] Griess R.L., Jr.: A construction of $F_1$ as automorphisms of a $196,883$-dimensional algebra.Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 686–691. Zbl 0452.20020, MR 0605419
Reference: [11] Griess R.L., Jr.: The friendly giant.Invent. Math. 69 (1982), 1–102. Zbl 0498.20013, MR 0671653
Reference: [12] Griess R.L., Jr.: Sporadic groups, code loops and nonvanishing cohomology.J. Pure Appl. Algebra 44 (1987), 191–214. Zbl 0611.20009, MR 0885104
Reference: [13] Griess R.L., Jr.: Code loops and a large finite group containing triality for $D_4$.Proc. Atti del Convegno Internazionale di Teoria Dei Gruppi e Geometria Combinatoria (Firenze, October 1986), Serie II, 19, 1988, pp. 79–98. MR 0988189
Reference: [14] Griess R.L., Jr.: A Moufang loop, the exceptional Jordan algebra and a cubic form in $27$ variables.J. Algebra 131 (1990), no. 1, 281–293. Zbl 0718.17028, MR 1055009
Reference: [15] Griess R.L., Jr.: Codes, Loops and $p$-Locals.Groups, Difference Sets and the Monster (Columbus, OH, 1993), pp. 369–375, de Gruyter, Berlin, 1996. Zbl 0865.94030, MR 1400428
Reference: [16] Griess R.L., Jr.: A vertex operator algebra related to $E_8$ with automorphism group $O^+(10,2)$.The Monster and Lie Algebras (Columbus, OH 1996), ed. J. Ferrar, K. Harada, de Gruyter, Berlin, 1998. MR 1650633
Reference: [17] Griess R.L., Jr.: The monster and its nonassociative algebra.in Proceedings of the Montreal Conference on Finite Groups, Contemporary Mathematics, 45, 121-157, 1985, American Mathematical Society, Providence, RI. Zbl 0582.20007, MR 0822237
Reference: [18] Griess R.L., Jr., Ryba A.J.E.: Finite simple groups which projectively embed in an exceptional Lie group are classified!.Bull. Amer. Math. Soc. 36 (1999), no. 1, 75–93. Zbl 0916.22008, MR 1653177
Reference: [19] Griess R.L., Jr., Ryba A.J.E.: Quasisimple finite subgroups of exceptional algebraic groups.Journal of Group Theory, 2002, 1–39. MR 1879514
Reference: [20] Griess R.L., Jr., Höhn G.: Virasoro frames and their stabilizers for the $E_8$ lattice type vertex operator algebra.J. Reine Angew. Math. 561 (2003), 1–37. MR 1998606
Reference: [21] Griess R.L., Jr.: GNAVOA, I. Studies in groups, nonassociative algebras and vertex operator algbras.Vertex Operator Algebras in Mathematics and Physics (Toronto, 2000), pp. 71–88, Fields Ins. Commun., 39, Amer. Math. Soc., Providence, 2003. MR 2029791
Reference: [22] Lam C.H.: Construction of vertex operator algebras from commutative associative algebras.Comm. Algebra 24 (1996), no. 14, 4339–4360. Zbl 0892.17020, MR 1421193
Reference: [23] Lam C.H.: On VOA associated with special Jordan algebras.Comm. Algebra 27 (1999), no. 4, 1665–1681. Zbl 0934.17016, MR 1679676
Reference: [24] Miyamoto M.: Griess algebras and conformal vectors in vertex operator algebras.J. Algebra 179 (1996), no. 2, 523–548. Zbl 0964.17021, MR 1367861
Reference: [25] Meyer W., Neutsch W.: Associative subalgebras of the Griess algebra.J. Algebra 158 (1993), no. 1, 1–17. Zbl 0789.17002, MR 1223664
Reference: [26] Norton S.: The Monster Algebra: some new formulae.appeared in AMS Contemp. Math. 193 “Moonshine, the Monster and Related Topics” (eds. Chongying Dong and Geoffrey Mason), 1996, pp. 297–306 (Conference at Mount Holyoke, 1994). Zbl 0847.11023, MR 1372728
Reference: [27] Roitman M.: On Griess algebras.Symmetry, Integrability and Geometry, Methods and Applications, SIGMA 4 (2008); http://www.emis.de/journals/SIGMA/2008/057/. MR 2434941
Reference: [28] Smith S.D.: Nonassociative commutative algebras for triple covers of $3$-transposition groups.Michigan Math. J. 24 (1977), 273–287. Zbl 0391.20011, MR 0491931
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_8.pdf 235.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo