Previous |  Up |  Next

Article

Keywords:
Zorn vector matrix; Moufang loop; Paige loop
Summary:
In ``A class of simple Moufang loops'', Proc. Amer. Math. Soc. {\bf 7} (1956), 471--482, Paige used the vector matrix construction over fields to produce simple Moufang loops. The purpose of this paper is to generalize the construction to the class of commutative rings, and examine the Moufang loops arising in this fashion. Specific attention is paid to the construction over the ring of integers modulo four.
References:
[1] Bruck R.H., Kleinfeld E.: The structure of alternative division rings. Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 88–90; MR0041834 (13,8c). DOI 10.1073/pnas.37.2.88 | MR 0041834 | Zbl 0044.02205
[2] Chein O.: Moufang loops of small order. I. Trans. Amer. Math. Soc. 188 (1974), 31–51; MR0330336 (48 \#8673). MR 0330336 | Zbl 0286.20088
[3] Liebeck M.W.: The classification of finite simple Moufang loops. Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 33–47; MR886433 (88g:20146). DOI 10.1017/S0305004100067025 | MR 0886433 | Zbl 0622.20061
[4] Merlini Giuliani M.L., Polcino Milies C.: The smallest simple Moufang loop. J. Algebra 320 (2008), no. 3, 961–979; MR2427625 (2009e:20145). DOI 10.1016/j.jalgebra.2007.03.049 | MR 2427625 | Zbl 1157.20041
[5] Moufang R.: Zur Struktur von Alternativkörpern. Math. Ann. 110 (1935), no. 1, 416–430; MR1512948. DOI 10.1007/BF01448037 | MR 1512948 | Zbl 0010.00403
[6] Paige L.J.: A class of simple Moufang loops. Proc. Amer. Math. Soc. 7 (1956), 471–482; MR0079596 (18,110f). DOI 10.1090/S0002-9939-1956-0079596-1 | MR 0079596 | Zbl 0070.25302
[7] Vojtěchovský P.: Investigation of subalgebra lattices by means of Hasse constants. Algebra Universalis 50 (2003), no. 1, 7–26; MR2026823 (2004j:20128). DOI 10.1007/s00012-003-1804-6 | MR 2026823
Partner of
EuDML logo