Previous |  Up |  Next

Article

Title: Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form (English)
Author: Shu, Shichang
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 2
Year: 2010
Pages: 87-97
Summary lang: English
.
Category: math
.
Summary: In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant $k$-th $(k<n)$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^{n+1}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _{s\rightarrow \pm \infty }\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^{n-m}(c_2)$ denotes $R^{n-m}$, $S^{n-m}(c_2)$ or $H^{n-m}(c_2)$, according to $c=0$, $c>0$ or $c<0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $. (English)
Keyword: space-like hypersurface
Keyword: Lorentzian space form
Keyword: $k$-mean curvature
Keyword: principal curvature
MSC: 53A10
MSC: 53C42
idZBL: Zbl 1240.53101
idMR: MR2684251
.
Date available: 2010-06-22T22:11:07Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/140305
.
Reference: [1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form.Yokohama Math. J. 35 (2) (1987), 123–136. Zbl 0645.53010, MR 0928379
Reference: [2] Akutagawa, K.: On spacelike hypersurfaces with constant mean curvature in a de Sitter space.Math. Z. 196 (1987), 13–19. MR 0907404, 10.1007/BF01179263
Reference: [3] Brasil, A., Jr., , Colares, A. G., Palmas, O.: Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem.Illinois J. Math. 47 (2003), 847–866. Zbl 1047.53031, MR 2007240
Reference: [4] Calabi, E.: Examples of Bernstein problems for some nonlinear equations.Proc. Sympos. Pure Math. 15 (1970), 223–230. Zbl 0211.12801, MR 0264210
Reference: [5] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz- Minkowski spaces.Ann. of Math. (2) 104 (3) (1976), 407–419. Zbl 0352.53021, MR 0431061, 10.2307/1970963
Reference: [6] Chouque-Bruhat, Y., Fisher, A. E., Marsden, J. E.: Maximal hypersurfaces and positivity mass.Proc. of the E. Fermi Summer School of the Italian Physical Society (Ehlers, J., ed.), North-Holland, 1979.
Reference: [7] Goddard, A. J.: Some remarks on the existence of spacelike hypersurfaces of constant mean curvature.Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. Zbl 0386.53042, MR 0458344, 10.1017/S0305004100054153
Reference: [8] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant salar curvature in the de Sitter space.Differential Geom. Appl. 25 (2007), 594–611. MR 2373937, 10.1016/j.difgeo.2007.06.008
Reference: [9] Ishihara, T.: Maximal space-like submanifolds of a pseudo-Riemannian space form of constant curvature.Michigan Math. J. 35 (1988), 345–352. MR 0978304, 10.1307/mmj/1029003815
Reference: [10] Ki, U.-H., Kim, H.-J., Nakagawa, H.: On space-like hypersurfaces with constant mean curvature of a Lorentz space form.Tokyo J. Math. 14 (1) (1991), 205–215. Zbl 0739.53047, MR 1108167, 10.3836/tjm/1270130500
Reference: [11] Li, H., Chen, W.: Integral formulas for compact spacelike hypersurfaces in de Sitter space and their applications to Goddard’s conjecture.Acta Math. Sinica (N.S.) 14 (2) (1998), 285–288. Zbl 1019.53037, MR 1704853, 10.1007/BF02560214
Reference: [12] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature.Amer. J. Math. 92 (1970), 145–173. Zbl 0196.25102, MR 0264565, 10.2307/2373502
Reference: [13] Ramanathan, J.: Complete spacelike hypersurfaces of constant mean curvature in the de Sitter space.Indiana Univ. Math. J. 36 (1987), 349–359. MR 0891779, 10.1512/iumj.1987.36.36020
Reference: [14] Shu, S.: Complete space-like hypersurfaces in a de Sitter space.Bull. Austral. Math. Soc. 73 (2006), 9–16. MR 2206558, 10.1017/S0004972700038570
Reference: [15] Wei, G.: Complete hypersurfaces with constant mean curvature in a unit sphere.Monatsh. Math. 149 (2006), 251–258. Zbl 1129.53042, MR 2273364, 10.1007/s00605-005-0377-1
Reference: [16] Zheng, Y.: Space-like hypersurfaces with constant salar curvature in the de Sitter space.Differential Geom. Appl. 6 (1996), 51–54. MR 1384878, 10.1016/0926-2245(96)00006-X
.

Files

Files Size Format View
ArchMathRetro_046-2010-2_2.pdf 492.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo