Title:
|
Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form (English) |
Author:
|
Shu, Shichang |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
87-97 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant $k$-th $(k<n)$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^{n+1}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _{s\rightarrow \pm \infty }\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^{n-m}(c_2)$ denotes $R^{n-m}$, $S^{n-m}(c_2)$ or $H^{n-m}(c_2)$, according to $c=0$, $c>0$ or $c<0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $. (English) |
Keyword:
|
space-like hypersurface |
Keyword:
|
Lorentzian space form |
Keyword:
|
$k$-mean curvature |
Keyword:
|
principal curvature |
MSC:
|
53A10 |
MSC:
|
53C42 |
idZBL:
|
Zbl 1240.53101 |
idMR:
|
MR2684251 |
. |
Date available:
|
2010-06-22T22:11:07Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140305 |
. |
Reference:
|
[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form.Yokohama Math. J. 35 (2) (1987), 123–136. Zbl 0645.53010, MR 0928379 |
Reference:
|
[2] Akutagawa, K.: On spacelike hypersurfaces with constant mean curvature in a de Sitter space.Math. Z. 196 (1987), 13–19. MR 0907404, 10.1007/BF01179263 |
Reference:
|
[3] Brasil, A., Jr., , Colares, A. G., Palmas, O.: Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem.Illinois J. Math. 47 (2003), 847–866. Zbl 1047.53031, MR 2007240 |
Reference:
|
[4] Calabi, E.: Examples of Bernstein problems for some nonlinear equations.Proc. Sympos. Pure Math. 15 (1970), 223–230. Zbl 0211.12801, MR 0264210 |
Reference:
|
[5] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz- Minkowski spaces.Ann. of Math. (2) 104 (3) (1976), 407–419. Zbl 0352.53021, MR 0431061, 10.2307/1970963 |
Reference:
|
[6] Chouque-Bruhat, Y., Fisher, A. E., Marsden, J. E.: Maximal hypersurfaces and positivity mass.Proc. of the E. Fermi Summer School of the Italian Physical Society (Ehlers, J., ed.), North-Holland, 1979. |
Reference:
|
[7] Goddard, A. J.: Some remarks on the existence of spacelike hypersurfaces of constant mean curvature.Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. Zbl 0386.53042, MR 0458344, 10.1017/S0305004100054153 |
Reference:
|
[8] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant salar curvature in the de Sitter space.Differential Geom. Appl. 25 (2007), 594–611. MR 2373937, 10.1016/j.difgeo.2007.06.008 |
Reference:
|
[9] Ishihara, T.: Maximal space-like submanifolds of a pseudo-Riemannian space form of constant curvature.Michigan Math. J. 35 (1988), 345–352. MR 0978304, 10.1307/mmj/1029003815 |
Reference:
|
[10] Ki, U.-H., Kim, H.-J., Nakagawa, H.: On space-like hypersurfaces with constant mean curvature of a Lorentz space form.Tokyo J. Math. 14 (1) (1991), 205–215. Zbl 0739.53047, MR 1108167, 10.3836/tjm/1270130500 |
Reference:
|
[11] Li, H., Chen, W.: Integral formulas for compact spacelike hypersurfaces in de Sitter space and their applications to Goddard’s conjecture.Acta Math. Sinica (N.S.) 14 (2) (1998), 285–288. Zbl 1019.53037, MR 1704853, 10.1007/BF02560214 |
Reference:
|
[12] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature.Amer. J. Math. 92 (1970), 145–173. Zbl 0196.25102, MR 0264565, 10.2307/2373502 |
Reference:
|
[13] Ramanathan, J.: Complete spacelike hypersurfaces of constant mean curvature in the de Sitter space.Indiana Univ. Math. J. 36 (1987), 349–359. MR 0891779, 10.1512/iumj.1987.36.36020 |
Reference:
|
[14] Shu, S.: Complete space-like hypersurfaces in a de Sitter space.Bull. Austral. Math. Soc. 73 (2006), 9–16. MR 2206558, 10.1017/S0004972700038570 |
Reference:
|
[15] Wei, G.: Complete hypersurfaces with constant mean curvature in a unit sphere.Monatsh. Math. 149 (2006), 251–258. Zbl 1129.53042, MR 2273364, 10.1007/s00605-005-0377-1 |
Reference:
|
[16] Zheng, Y.: Space-like hypersurfaces with constant salar curvature in the de Sitter space.Differential Geom. Appl. 6 (1996), 51–54. MR 1384878, 10.1016/0926-2245(96)00006-X |
. |