Previous |  Up |  Next

Article

Title: A note on linear perturbations of oscillatory second order differential equations (English)
Author: Manfrin, Renato
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 2
Year: 2010
Pages: 105-118
Summary lang: English
.
Category: math
.
Summary: Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$. (English)
Keyword: second order ODE
Keyword: boundedness of solutions
Keyword: linear perturbations
MSC: 34C11
MSC: 34D10
idZBL: Zbl 1240.34186
idMR: MR2684253
.
Date available: 2010-06-22T22:11:31Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/140307
.
Reference: [1] Bellman, R.: A stability property of solutions of linear differential equations.Duke Math. J. 11 (1944), 513–516. Zbl 0061.18503, MR 0010761, 10.1215/S0012-7094-44-01146-4
Reference: [2] Bellman, R.: Stability Theory of Differential Equations.McGraw-Hill Book Company, New York, 1953. Zbl 0053.24705, MR 0061235
Reference: [3] Cesari, L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations.2nd ed., Springer-Verlag, Berlin, 1963. Zbl 0111.08701
Reference: [4] Galbraith, A., McShane, E. J., Parrish, G.: On the solutions of the linear second-order differential equations.Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247–249. MR 0174817, 10.1073/pnas.53.2.247
Reference: [5] Knowles, I.: On stability conditions for second order linear differential equations.J. Differential Equations 34 (1979), 179–203. Zbl 0388.34029, MR 0550039, 10.1016/0022-0396(79)90003-2
Reference: [6] Manfrin, R.: Quadratic forms for the Liouville equation $\,w_{tt}+ \lambda ^2a(t) w=0$ with applications to Kirchhoff equation.Portugal. Math. 65 (2008), 447–484. Zbl 1160.35477, MR 2483347, 10.4171/PM/1821
Reference: [7] Manfrin, R.: $ L^p$ solutions of second order differential equations.Funkcial. Ekvac. 52 (2009), 255–279. Zbl 1175.34044, MR 2547105, 10.1619/fesi.52.255
Reference: [8] Manfrin, R.: On the boundedness of solutions of the equation $\, u^{\prime \prime }+ (1+f(t)) u=0$.Discrete Contin. Dynam. Systems 23 (2009), 991–1008. Zbl 1190.34037, MR 2461836
Reference: [9] Opial, Z.: Nouvelles remarques sur l’équation différentielle $u^{\prime \prime }+ a(t) u=0$.Ann. Polon. Math. 6 (1959), 75–81. Zbl 0085.07003, MR 0104864
Reference: [10] Trench, W. F.: On the asymptotic behavior of solutions of second order linear differential equations.Proc. Amer. Math. Soc. 14 (1963), 12–14. MR 0142844, 10.1090/S0002-9939-1963-0142844-7
.

Files

Files Size Format View
ArchMathRetro_046-2010-2_4.pdf 535.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo