Title:
|
Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity (English) |
Author:
|
Calvaruso, Giovanni |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
119-134 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described. (English) |
Keyword:
|
conformally flat manifolds |
Keyword:
|
semi-symmetric and pseudo-symmetric spaces |
Keyword:
|
homogeneous and curvature homogeneous spaces |
MSC:
|
53C15 |
MSC:
|
53C25 |
MSC:
|
53C35 |
MSC:
|
53C50 |
idZBL:
|
Zbl 1240.53116 |
idMR:
|
MR2684254 |
. |
Date available:
|
2010-06-22T22:11:43Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140308 |
. |
Reference:
|
[1] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two.World Scientific, 1996. Zbl 0904.53006, MR 1462887 |
Reference:
|
[2] Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R.: Some remarks on locally conformally flat static space-times.J. Math. Phys. 46 (2005), 11pp., 022501. Zbl 1076.53084, MR 2121707, 10.1063/1.1832755 |
Reference:
|
[3] Bueken, P.: On curvature homogeneous three-dimensional Lorentzian manifolds.J. Geom. Phys. 22 (1997), 349–362. Zbl 0881.53055, MR 1454495, 10.1016/S0393-0440(96)00037-X |
Reference:
|
[4] Bueken, P., Djorić, M.: Three-dimensional Lorentz metrics and curvature homogeneity of order one.Ann. Glob. Anal. Geom. 18 (2000), 85–103. MR 1739527, 10.1023/A:1006612120550 |
Reference:
|
[5] Calvaruso, G.: Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one.Canad. Math. Bull., to appear. MR 1811888 |
Reference:
|
[6] Calvaruso, G.: Conformally flat semi-symmetric spaces.Arch. Math. (Brno) 41 (2005), 27–36. Zbl 1114.53027, MR 2142141 |
Reference:
|
[7] Calvaruso, G.: Conformally flat pseudo-symmetric spaces of constant type.Czechoslovak Math. J. 56 (131) (2006), 649–657. Zbl 1164.53339, MR 2291764, 10.1007/s10587-006-0045-1 |
Reference:
|
[8] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifold.Geom. Dedicata 127 (2007), 99–119. MR 2338519, 10.1007/s10711-007-9163-7 |
Reference:
|
[9] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds.J. Geom. Phys. 57 (2007), 1279–1291. Zbl 1112.53051, MR 2287304, 10.1016/j.geomphys.2006.10.005 |
Reference:
|
[10] Calvaruso, G., De Leo, B., : Pseudo-symmetric Lorentzian three-manifolds.Int. J. Geom. Methods Mod. Phys. 6 (7) (2009), 1–16. Zbl 1192.53064, MR 2589823, 10.1142/S0219887809004132 |
Reference:
|
[11] Calvaruso, G., Van der Veken, J., : Lorentzian symmetric three-spaces and their parallel surfaces.Internat. J. Math. 20 (10) (2009), 1185–1205. MR 2574312, 10.1142/S0129167X09005728 |
Reference:
|
[12] Calvaruso, G., Vanhecke, L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture.Bull. Austral. Math. Soc. 57 (1998), 109–115. Zbl 0903.53031, MR 1623824, 10.1017/S0004972700031452 |
Reference:
|
[13] Chaichi, M., García-Río, E., Vázquez-Abal, M. E.: Three-dimensional Lorentz manifolds admitting a parallel null vector field.J. Phys. A: Math. Gen. 38 (2005), 841–850. MR 2125237, 10.1088/0305-4470/38/4/005 |
Reference:
|
[14] Deprez, J., Desczcz, R., Verstraelen, L.: Examples of pseudo-symmetric conformally flat warped products.Chinese J. Math. 17 (1989), 51–65. MR 1007875 |
Reference:
|
[15] García-Río, E., Haji-Badali, A., Vázquez-Abal, M. E., Vázquez-Lorenz, R.: Lorentzian $3$-manifolds with commuting curvature operators.Int. J. Geom. Methods Mod. Phys. 5 (4) (2008), 557–572. MR 2428812, 10.1142/S0219887808002941 |
Reference:
|
[16] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. Zbl 1054.53060, MR 1811172 |
Reference:
|
[17] Honda, K.: Conformally flat semi-Riemannian manifolds with commuting curvature and Ricci operators.Tokyo J. Math. 26 (1) (2003), 241–260. Zbl 1055.53054, MR 1982008, 10.3836/tjm/1244208691 |
Reference:
|
[18] Honda, K., Tsukada, K.: Three-dimensional conformally flat homogeneous Lorentzian manifolds.J. Phys. A: Math. Theor. 40 (2007), 831–851. Zbl 1116.53042, MR 2303606, 10.1088/1751-8113/40/4/017 |
Reference:
|
[19] O’Neill, B.: Semi-Riemannian Geometry.Academic Press, New York, 1983. MR 0719023 |
Reference:
|
[20] Ryan, P.: A note on conformally flat spaces with constant scalar curvature.Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., 1971 (2), Dalhousie Univ. Halifax, 1972, pp. 115–124. Zbl 0267.53024, MR 0487882 |
Reference:
|
[21] Sekigawa, K., Takagi, H.: On conformally flat spaces satisfyig a certain condition on the Ricci tensor.Tôhoku Math. J. 23 (1971), 1–11. MR 0284946, 10.2748/tmj/1178242681 |
Reference:
|
[22] Singer, I. M.: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408 |
Reference:
|
[23] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, The local version.J. Differential Geom. 17 (1982), 531–582. MR 0683165 |
Reference:
|
[24] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, II, Global versions.Geom. Dedicata 19 (1985), 65–108. MR 0797152, 10.1007/BF00233102 |
Reference:
|
[25] Takagi, H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109, 10.2748/tmj/1178241595 |
Reference:
|
[26] Takagi, H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries.Tohôku Math. J. 27 (1975), 103–110. Zbl 0323.53037, MR 0442852, 10.2748/tmj/1178241040 |
. |