Previous |  Up |  Next

Article

Title: Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity (English)
Author: Calvaruso, Giovanni
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 2
Year: 2010
Pages: 119-134
Summary lang: English
.
Category: math
.
Summary: We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described. (English)
Keyword: conformally flat manifolds
Keyword: semi-symmetric and pseudo-symmetric spaces
Keyword: homogeneous and curvature homogeneous spaces
MSC: 53C15
MSC: 53C25
MSC: 53C35
MSC: 53C50
idZBL: Zbl 1240.53116
idMR: MR2684254
.
Date available: 2010-06-22T22:11:43Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/140308
.
Reference: [1] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two.World Scientific, 1996. Zbl 0904.53006, MR 1462887
Reference: [2] Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R.: Some remarks on locally conformally flat static space-times.J. Math. Phys. 46 (2005), 11pp., 022501. Zbl 1076.53084, MR 2121707, 10.1063/1.1832755
Reference: [3] Bueken, P.: On curvature homogeneous three-dimensional Lorentzian manifolds.J. Geom. Phys. 22 (1997), 349–362. Zbl 0881.53055, MR 1454495, 10.1016/S0393-0440(96)00037-X
Reference: [4] Bueken, P., Djorić, M.: Three-dimensional Lorentz metrics and curvature homogeneity of order one.Ann. Glob. Anal. Geom. 18 (2000), 85–103. MR 1739527, 10.1023/A:1006612120550
Reference: [5] Calvaruso, G.: Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one.Canad. Math. Bull., to appear. MR 1811888
Reference: [6] Calvaruso, G.: Conformally flat semi-symmetric spaces.Arch. Math. (Brno) 41 (2005), 27–36. Zbl 1114.53027, MR 2142141
Reference: [7] Calvaruso, G.: Conformally flat pseudo-symmetric spaces of constant type.Czechoslovak Math. J. 56 (131) (2006), 649–657. Zbl 1164.53339, MR 2291764, 10.1007/s10587-006-0045-1
Reference: [8] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifold.Geom. Dedicata 127 (2007), 99–119. MR 2338519, 10.1007/s10711-007-9163-7
Reference: [9] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds.J. Geom. Phys. 57 (2007), 1279–1291. Zbl 1112.53051, MR 2287304, 10.1016/j.geomphys.2006.10.005
Reference: [10] Calvaruso, G., De Leo, B., : Pseudo-symmetric Lorentzian three-manifolds.Int. J. Geom. Methods Mod. Phys. 6 (7) (2009), 1–16. Zbl 1192.53064, MR 2589823, 10.1142/S0219887809004132
Reference: [11] Calvaruso, G., Van der Veken, J., : Lorentzian symmetric three-spaces and their parallel surfaces.Internat. J. Math. 20 (10) (2009), 1185–1205. MR 2574312, 10.1142/S0129167X09005728
Reference: [12] Calvaruso, G., Vanhecke, L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture.Bull. Austral. Math. Soc. 57 (1998), 109–115. Zbl 0903.53031, MR 1623824, 10.1017/S0004972700031452
Reference: [13] Chaichi, M., García-Río, E., Vázquez-Abal, M. E.: Three-dimensional Lorentz manifolds admitting a parallel null vector field.J. Phys. A: Math. Gen. 38 (2005), 841–850. MR 2125237, 10.1088/0305-4470/38/4/005
Reference: [14] Deprez, J., Desczcz, R., Verstraelen, L.: Examples of pseudo-symmetric conformally flat warped products.Chinese J. Math. 17 (1989), 51–65. MR 1007875
Reference: [15] García-Río, E., Haji-Badali, A., Vázquez-Abal, M. E., Vázquez-Lorenz, R.: Lorentzian $3$-manifolds with commuting curvature operators.Int. J. Geom. Methods Mod. Phys. 5 (4) (2008), 557–572. MR 2428812, 10.1142/S0219887808002941
Reference: [16] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. Zbl 1054.53060, MR 1811172
Reference: [17] Honda, K.: Conformally flat semi-Riemannian manifolds with commuting curvature and Ricci operators.Tokyo J. Math. 26 (1) (2003), 241–260. Zbl 1055.53054, MR 1982008, 10.3836/tjm/1244208691
Reference: [18] Honda, K., Tsukada, K.: Three-dimensional conformally flat homogeneous Lorentzian manifolds.J. Phys. A: Math. Theor. 40 (2007), 831–851. Zbl 1116.53042, MR 2303606, 10.1088/1751-8113/40/4/017
Reference: [19] O’Neill, B.: Semi-Riemannian Geometry.Academic Press, New York, 1983. MR 0719023
Reference: [20] Ryan, P.: A note on conformally flat spaces with constant scalar curvature.Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., 1971 (2), Dalhousie Univ. Halifax, 1972, pp. 115–124. Zbl 0267.53024, MR 0487882
Reference: [21] Sekigawa, K., Takagi, H.: On conformally flat spaces satisfyig a certain condition on the Ricci tensor.Tôhoku Math. J. 23 (1971), 1–11. MR 0284946, 10.2748/tmj/1178242681
Reference: [22] Singer, I. M.: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408
Reference: [23] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, The local version.J. Differential Geom. 17 (1982), 531–582. MR 0683165
Reference: [24] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, II, Global versions.Geom. Dedicata 19 (1985), 65–108. MR 0797152, 10.1007/BF00233102
Reference: [25] Takagi, H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109, 10.2748/tmj/1178241595
Reference: [26] Takagi, H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries.Tohôku Math. J. 27 (1975), 103–110. Zbl 0323.53037, MR 0442852, 10.2748/tmj/1178241040
.

Files

Files Size Format View
ArchMathRetro_046-2010-2_5.pdf 511.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo