Previous |  Up |  Next

Article

Title: Kendall's tau-type rank statistics in genome data (English)
Author: Kang, Moonsu
Author: Sen, Pranab K.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 3
Year: 2008
Pages: 207-221
Summary lang: English
.
Category: math
.
Summary: High-dimensional data models abound in genomics studies, where often inadequately small sample sizes create impasses for incorporation of standard statistical tools. Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normality of errors may not be tenable in many such interdisciplinary setups. In this study, Kendall's tau-type rank statistics are employed for statistical inference, avoiding most of parametric assumptions to a greater extent. The proposed procedures are compared with Kendall's tau statistic based ones. Applications in microarray data models are stressed. (English)
Keyword: dimensional asymptotics
Keyword: genomics
Keyword: multiple hypotheses testing
Keyword: microarray data model
Keyword: nonparametrics
Keyword: U-statistics
MSC: 62G10
MSC: 62G99
MSC: 62H20
MSC: 62P10
MSC: 62P99
MSC: 92C40
MSC: 92D10
idZBL: Zbl 1195.62097
idMR: MR2411125
DOI: 10.1007/s10492-008-0005-1
.
Date available: 2010-07-20T12:17:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140316
.
Reference: [1] Arratia, R., Goldstein, L., Gordon, L.: Two moments suffice for Poisson approximations: The Chen-Stein method.Ann. Probab. 17 (1989), 9-25. Zbl 0675.60017, MR 0972770, 10.1214/aop/1176991491
Reference: [2] Arratia, R., Goldstein, L., Gordon, L.: Poisson approximation and the Chen-Stein method.Stat. Sci. 5 (1990), 403-424. Zbl 0955.62542, MR 1092983, 10.1214/ss/1177012015
Reference: [3] Arratia, R., Goldstein, L., Gordon, L.: Poisson approximation and the Chen-Stein method: Rejoinder.Stat. Sci. 5 (1990), 432-434. MR 1092983, 10.1214/ss/1177012020
Reference: [4] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing.J. R. Stat. Soc., Ser. B 57 (1995), 289-300. Zbl 0809.62014, MR 1325392
Reference: [5] Chen, L. H. Y.: Poisson approximation for dependent trials.Ann. Probab. 3 (1975), 534-545. Zbl 0335.60016, MR 0428387, 10.1214/aop/1176996359
Reference: [6] Chen, L. H. Y.: Poisson approximation and the Chen-Stein method: Comment.Stat. Sci. 5 (1990), 429-432. MR 1092983, 10.1214/ss/1177012019
Reference: [7] Goldstein, L., Watterman, M.: Poisson, compound Poisson and process approximations for testing statistical significance in sequence comparisons.Bull. Math. Biol. 54 (1992), 785-812. 10.1007/BF02459930
Reference: [8] Goldstein, L., Xia, A.: Zero biasing and a discrete central limit theorem.Ann. Probab. 34 (2006), 1782-1806. Zbl 1111.60015, MR 2271482, 10.1214/009117906000000250
Reference: [9] Jurečková, J., Sen, P. K.: Robust Statistical Procedures: Asymptotics and Interrelations. Wiley Series.Wiley & Sons New York (1996). MR 1387346
Reference: [10] Kang, M.: Multiple testing in genome-wide studies.UNC Biostatistics Thesis (2007).
Reference: [11] Kendall, M. G.: A new measure of rank correlation.Biometrika 30 (1938), 81-93. Zbl 0019.13001, 10.1093/biomet/30.1-2.81
Reference: [12] Lobenhofer, E. K., Bennett, L., Cable, P. L., Li, L., Bushel, P. R., Afshari, C. A.: Regulation of DNA replication fork genes by 17-estradiol.Molecular Endocrinology 16 (2002), 1215-1229.
Reference: [13] Roy, S. N.: On a heuristic method of test construction and its use in multivariate analysis.J. Ann. Math. Stat. 24 (1953), 220-238. Zbl 0051.36701, MR 0057519, 10.1214/aoms/1177729029
Reference: [14] Sarkar, S. K., Chang, C.-K.: The Simes method for multiple hypothesis testing with positively dependent test statistics.J. Am. Stat. Assoc. 92 (1997), 1601-1608. Zbl 0912.62079, MR 1615269, 10.1080/01621459.1997.10473682
Reference: [15] Sen, P. K.: Estimates of the regression coefficients based on Kendall's tau.J. Am. Stat. Assoc. 63 (1968), 1379-1389. MR 0258201, 10.1080/01621459.1968.10480934
Reference: [16] Sen, P. K.: Robust statistical inference for high-dimensional data models with application to genomics.Aust. J. Stat. 35 (2006), 197-211.
Reference: [17] Sen, P. K.: Kendall's tau in high-dimension genomics parsimony.IMS Collection 3 (2008), 250-265. MR 2459229
Reference: [18] Sen, P. K., Tsai, M.-T., Jou, Y.-S.: High-dimension low sample size perspectives in constrained statistical inference: The SARSCoV RNA genome in illustration.J. Am. Stat. Assoc. 102 (2007), 686-694. Zbl 1172.62335, MR 2370860, 10.1198/016214507000000077
Reference: [19] Storey, J.: A direct approach to false discovery rates.J. R. Stat. Soc., Ser. B 64 (2002), 479-498. Zbl 1090.62073, MR 1924302, 10.1111/1467-9868.00346
.

Files

Files Size Format View
AplMat_53-2008-3_5.pdf 285.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo