Previous |  Up |  Next

Article

Title: Asymptotics of the regression quantile basic solution under misspecification (English)
Author: Knight, Keith
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 3
Year: 2008
Pages: 223-234
Summary lang: English
.
Category: math
.
Summary: We consider the asymptotic distribution of covariate values in the quantile regression basic solution under weak assumptions. A diagnostic procedure for assessing homogeneity of the conditional densities is also proposed. (English)
Keyword: regression quantiles
Keyword: basic solution
Keyword: misspecified model
MSC: 60F05
MSC: 60F99
MSC: 62E20
MSC: 62G08
MSC: 62J02
MSC: 62J05
MSC: 62J20
idZBL: Zbl 1197.62075
idMR: MR2411126
DOI: 10.1007/s10492-008-0006-0
.
Date available: 2010-07-20T12:18:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140317
.
Reference: [1] Angrist, J., Chernozhukov, V., Fernández-Val, I.: Quantile regression under misspecification with an application to the U.S. wage structure.Econometrica 74 (2006), 539-563. MR 2207400, 10.1111/j.1468-0262.2006.00671.x
Reference: [2] Jun., G. Bassett, Koenker, R.: Asymptotic theory of least absolute error regression.J. Am. Stat. Assoc. 73 (1978), 618-622. Zbl 0391.62046, MR 0514166, 10.1080/01621459.1978.10480065
Reference: [3] Chernozhukov, V., Fernández-Val, I.: Subsampling inference on quantile regression processes.Sankhya 67 (2005), 253-276. Zbl 1192.62128, MR 2208889
Reference: [4] Dantzig, G. B.: Linear Programming and Extensions.Princeton University Press Princeton (1951). MR 1658673
Reference: [5] Fiacco, A. V., McCormick, G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques.Wiley New York (1968). Zbl 0193.18805, MR 0243831
Reference: [6] Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications.Biometrika 57 (1970), 97-109. Zbl 0219.65008, 10.1093/biomet/57.1.97
Reference: [7] Karmarker, N.: A new polynomial time algorithm for linear programming.Combinatorica 4 (1984), 373-395. MR 0779900, 10.1007/BF02579150
Reference: [8] Khmaladze, E. V.: An innovative approach to goodness-of-fit tests in $\Bbb R^m$.Ann. Stat. 16 (1988), 1503-1516. MR 0964936, 10.1214/aos/1176351051
Reference: [9] Knight, K., Goh, C.: Asymptotics of quantile regression solutions with application.Manuscript in preparation.
Reference: [10] Koenker, R.: Quantile Regression.Cambridge University Press Cambridge (2005). Zbl 1111.62037, MR 2268657
Reference: [11] Koenker, R., Bassett, G. W.: Regression quantiles.Econometrica 46 (1978), 33-50. Zbl 0373.62038, MR 0474644, 10.2307/1913643
Reference: [12] Koenker, R., d'Orey, V.: Computing regression quantiles.Appl. Stat. 36 (1987), 383-393. 10.2307/2347802
Reference: [13] Koenker, R., Park, B. J.: An interior point algorithm for nonlinear quantile regression.J. Econom. 71 (1996), 265-283. Zbl 0855.62030, MR 1381085, 10.1016/0304-4076(96)84507-6
Reference: [14] Koenker, R., Xiao, Z.: Inference on the quantile regression process.Econometrica 70 (2002), 1583-1612. Zbl 1152.62339, MR 1929979, 10.1111/1468-0262.00342
Reference: [15] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E.: Equations of state calculations by fast computing machines.J. Chem. Phys. 21 (1953), 1087-1092. 10.1063/1.1699114
Reference: [16] Mukhin, A. B.: Local limit theorems for distributions of sums of independent random vectors.Theory Probab. Appl. 29 (1985), 369-375. Zbl 0557.60019, MR 0749924
Reference: [17] Mukhin, A.: Local limit theorems for lattice random variables.Theory Probab. Appl. 36 (1991), 698-713. Zbl 0776.60027, MR 1147168, 10.1137/1136086
.

Files

Files Size Format View
AplMat_53-2008-3_6.pdf 611.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo