Title:
|
Asymptotics of the regression quantile basic solution under misspecification (English) |
Author:
|
Knight, Keith |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
53 |
Issue:
|
3 |
Year:
|
2008 |
Pages:
|
223-234 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the asymptotic distribution of covariate values in the quantile regression basic solution under weak assumptions. A diagnostic procedure for assessing homogeneity of the conditional densities is also proposed. (English) |
Keyword:
|
regression quantiles |
Keyword:
|
basic solution |
Keyword:
|
misspecified model |
MSC:
|
60F05 |
MSC:
|
60F99 |
MSC:
|
62E20 |
MSC:
|
62G08 |
MSC:
|
62J02 |
MSC:
|
62J05 |
MSC:
|
62J20 |
idZBL:
|
Zbl 1197.62075 |
idMR:
|
MR2411126 |
DOI:
|
10.1007/s10492-008-0006-0 |
. |
Date available:
|
2010-07-20T12:18:38Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140317 |
. |
Reference:
|
[1] Angrist, J., Chernozhukov, V., Fernández-Val, I.: Quantile regression under misspecification with an application to the U.S. wage structure.Econometrica 74 (2006), 539-563. MR 2207400, 10.1111/j.1468-0262.2006.00671.x |
Reference:
|
[2] Jun., G. Bassett, Koenker, R.: Asymptotic theory of least absolute error regression.J. Am. Stat. Assoc. 73 (1978), 618-622. Zbl 0391.62046, MR 0514166, 10.1080/01621459.1978.10480065 |
Reference:
|
[3] Chernozhukov, V., Fernández-Val, I.: Subsampling inference on quantile regression processes.Sankhya 67 (2005), 253-276. Zbl 1192.62128, MR 2208889 |
Reference:
|
[4] Dantzig, G. B.: Linear Programming and Extensions.Princeton University Press Princeton (1951). MR 1658673 |
Reference:
|
[5] Fiacco, A. V., McCormick, G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques.Wiley New York (1968). Zbl 0193.18805, MR 0243831 |
Reference:
|
[6] Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications.Biometrika 57 (1970), 97-109. Zbl 0219.65008, 10.1093/biomet/57.1.97 |
Reference:
|
[7] Karmarker, N.: A new polynomial time algorithm for linear programming.Combinatorica 4 (1984), 373-395. MR 0779900, 10.1007/BF02579150 |
Reference:
|
[8] Khmaladze, E. V.: An innovative approach to goodness-of-fit tests in $\Bbb R^m$.Ann. Stat. 16 (1988), 1503-1516. MR 0964936, 10.1214/aos/1176351051 |
Reference:
|
[9] Knight, K., Goh, C.: Asymptotics of quantile regression solutions with application.Manuscript in preparation. |
Reference:
|
[10] Koenker, R.: Quantile Regression.Cambridge University Press Cambridge (2005). Zbl 1111.62037, MR 2268657 |
Reference:
|
[11] Koenker, R., Bassett, G. W.: Regression quantiles.Econometrica 46 (1978), 33-50. Zbl 0373.62038, MR 0474644, 10.2307/1913643 |
Reference:
|
[12] Koenker, R., d'Orey, V.: Computing regression quantiles.Appl. Stat. 36 (1987), 383-393. 10.2307/2347802 |
Reference:
|
[13] Koenker, R., Park, B. J.: An interior point algorithm for nonlinear quantile regression.J. Econom. 71 (1996), 265-283. Zbl 0855.62030, MR 1381085, 10.1016/0304-4076(96)84507-6 |
Reference:
|
[14] Koenker, R., Xiao, Z.: Inference on the quantile regression process.Econometrica 70 (2002), 1583-1612. Zbl 1152.62339, MR 1929979, 10.1111/1468-0262.00342 |
Reference:
|
[15] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E.: Equations of state calculations by fast computing machines.J. Chem. Phys. 21 (1953), 1087-1092. 10.1063/1.1699114 |
Reference:
|
[16] Mukhin, A. B.: Local limit theorems for distributions of sums of independent random vectors.Theory Probab. Appl. 29 (1985), 369-375. Zbl 0557.60019, MR 0749924 |
Reference:
|
[17] Mukhin, A.: Local limit theorems for lattice random variables.Theory Probab. Appl. 36 (1991), 698-713. Zbl 0776.60027, MR 1147168, 10.1137/1136086 |
. |