Previous |  Up |  Next

Article

Title: Remarks on optimum kernels and optimum boundary kernels (English)
Author: Poměnková, Jitka
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 4
Year: 2008
Pages: 305-317
Summary lang: English
.
Category: math
.
Summary: Kernel smoothers belong to the most popular nonparametric functional estimates used for describing data structure. They can be applied to the fix design regression model as well as to the random design regression model. The main idea of this paper is to present a construction of the optimum kernel and optimum boundary kernel by means of the Gegenbauer and Legendre polynomials. (English)
Keyword: kernel
Keyword: optimum kernel
Keyword: optimum boundary kernel
MSC: 62G05
MSC: 62G07
MSC: 62G08
idZBL: Zbl 1194.62039
idMR: MR2433724
DOI: 10.1007/s10492-008-0028-7
.
Date available: 2010-07-20T12:25:48Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140324
.
Reference: [1] Gasser, T. L., Müller, H.-G., Mammitzsch, V.: Kernels for nonparametric curve estimation.J. R. Stat. Soc. B47 (1985), 238-251. MR 0816088
Reference: [2] Granovsky, B. L., Müller, H.-G.: Optimizing kernel methods: A unifying variational principle.Int. Stat. Rev. 59 (1991), 373-388. 10.2307/1403693
Reference: [3] Granovsky, B. L., Müller, H.-G., Pfeifer, C.: Some remarks on optimal kernel function.Stat. Decis. 13 (1995), 101-116. MR 1342732
Reference: [4] Härdle, W.: Applied Nonparametric Regression.Cambridge University Press Cambridge (1990). MR 1161622
Reference: [5] Horová, I.: Gegenbauer polynomials, optimal kernels and Stancu operators.Approximation Theory and Function Series Budapest (Hungary), 1995 P. Vértesi et al. János Bolyai Mathematical Socity Budapest (1996), 227-235. MR 1432671
Reference: [6] Horová, I.: Some remarks on kernels.J. Comput. Anal. Appl. 2 (2000), 253-263. MR 1778550
Reference: [7] Horová, I.: Optimization problems connected with kernel estimates.Signal Processing, Communications and Computer Science World Scientific and Engineering Society Press (2002), 339-334.
Reference: [8] Kolaček, J., Poměnková, J.: Comparative study of boundary effects for kernel smoothing.Austr. J. Stat. 35 (2006), 281-288.
Reference: [9] Mammitzsch, V.: The fluctuation of kernel estimators under certain moment conditions.Proc. ISI 1985 (1985), 17-18.
Reference: [10] Poměnková, J.: Gasser-Müller's estimate, LI.Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 3 (2004), Czech. MR 2159138
Reference: [11] Poměnková, J.: Some aspects of smoothing the regression function.PhD. thesis University of Ostrava Ostrava (2005), Czech.
Reference: [12] Poměnková, J.: Optimal kernels.Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LII (2004), 69-77 Czech.
Reference: [13] Poměnková, J.: Optimum choice of the bandwidth using ${\rm AMSE}$ for the Gasser-Müller estimator.Applications of Mathematics and Statistics in Economy University of Economics and Faculty of Informatics and Statistics Praha (2004), 192-198.
Reference: [14] Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Vol. 23.Am. Math. Soc. New York (1939).
Reference: [15] Wand, M. P., Jones, M. C.: Kernel Smoothing.Chapman & Hall London (1995). Zbl 0854.62043, MR 1319818
.

Files

Files Size Format View
AplMat_53-2008-4_3.pdf 302.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo