Previous |  Up |  Next

Article

Title: On quasi-stationary models of mixtures of compressible fluids (English)
Author: Frehse, Jens
Author: Weigant, Wladimir
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 4
Year: 2008
Pages: 319-345
Summary lang: English
.
Category: math
.
Summary: We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term. (English)
Keyword: compressible viscous fluids
Keyword: miscible mixtures
Keyword: quasi-stationary
MSC: 35D05
MSC: 35Q35
MSC: 76D03
MSC: 76D07
MSC: 76N10
MSC: 76T99
idZBL: Zbl 1199.76026
idMR: MR2433725
DOI: 10.1007/s10492-008-0029-6
.
Date available: 2010-07-20T12:27:14Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140325
.
Reference: [1] Bernardi, Ch., Pironneau, O.: On the shallow water equations at low Reynolds number.Commun. Partial Differential Equations 16 (1991), 59-104. Zbl 0723.76033, MR 1096834, 10.1080/03605309108820752
Reference: [2] Feireisl, E.: Compressible Navier-Stokes equations with a non-monotone pressure law.J. Differ. Equations 184 (2002), 97-108. Zbl 1012.76079, MR 1929148, 10.1006/jdeq.2001.4137
Reference: [3] Feireisl, E.: Dynamics of Compressible Flow.Oxford University Press Oxford (2003).
Reference: [4] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids.J. Math. Fluid Mech. 3 (2001), 358-392. MR 1867887, 10.1007/PL00000976
Reference: [5] Frehse, J., Goj, S., Málek, J.: On a Stokes-like system for mixtures of fluids.SIAM J. Math. Anal. 36 (2005), 1259-1281 (electronic). Zbl 1084.35057, MR 2139449, 10.1137/S0036141003433425
Reference: [6] Frehse, J., Goj, S., Málek, J.: A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum.Appl. Math. 50 (2005), 527-541. Zbl 1099.35079, MR 2181024, 10.1007/s10492-005-0035-x
Reference: [7] Gagliardo, E.: Ulteriori proprietà di alcune classi di funzioni in più variabili.Ric. Mat. 8 (1959), 24-51. Zbl 0199.44701, MR 0109295
Reference: [8] Goj, S.: Analysis for mixtures of fluids. Bonner Math. Schriften.Dissertation Universität Bonn, Math. Inst. (2005), http://bib.math.uni-bonn.de/pdf2/BMS-375.pdf. MR 2205590
Reference: [9] Golovkin, K. K.: On imbedding theorems.Soviet Math. Dokl. 1 (1960), 998-1001. Zbl 0104.33102, MR 0121640
Reference: [10] Haupt, P.: Continuum Mechanics Theory of Materials, 2nd ed. Advanced Texts in Physics.Springer Berlin (2002). MR 2011110
Reference: [11] Il'in, V. P.: On theorems of ``imbedding''.Trudy Mat. Inst. Steklov. 53 (1959), 359-386. MR 0112930
Reference: [12] Kazhikhov, A. V.: Resolution of boundary value problems for nonhomogeneous viscous fluids.Dokl. Akad. Nauk 216 (1974), 1008-1010 Russian.
Reference: [13] Kazhikhov, A. V.: The equations of potential flow of compressible viscous fluid at low Reynolds number.Acta Appl. Math. 37 (1994), 77-81. Zbl 0815.35083, MR 1308747, 10.1007/BF00995131
Reference: [14] Ladyzhenskaya, O. A., Solonnikov, V. A.: On the unique solvability of the initial value problem for viscous incompressible inhomogeneous fluids.Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI) 52 (1975), 52-109, 218-219 Russian. Zbl 0376.76021
Reference: [15] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1: Compressible Models. Oxford Science Publications.Clarendon Press Oxford (1996). MR 1422251
Reference: [16] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models. Oxford Science Publications.Clarendon Press Oxford (1998). MR 1637634
Reference: [17] Mamontov, A. E.: Well-posedness of a quasistationary model of a viscous compressible fluid.Sib. Mat. Zh. 37 (1996), 1117-1131. Zbl 0884.76077, MR 1643271, 10.1007/BF02110728
Reference: [18] Nouri, A., Poupaud, F., Demay, Y.: An existence theorem for the multi-fluid Stokes problem.Q. Appl. Math. 55 (1997), 421-435. Zbl 0882.35091, MR 1466141, 10.1090/qam/1466141
Reference: [19] Nouri, A., Poupaud, F.: An existence theorem for the multifluid Navier-Stokes problem.J. Differ. Equations 122 (1995), 71-88. Zbl 0842.35079, MR 1356130, 10.1006/jdeq.1995.1139
Reference: [20] Rajagopal, K. R., Tao, L.: Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences Vol. 35.World Scientific Publishing River Edge (1995). MR 1370661
Reference: [21] Solonnikov, V. A.: On boundary value problems for linear parabolic systems of differential equations of general form.Trudy Mat. Inst. Steklov 83 (1965), 3-163. Zbl 0164.12502, MR 0211083
Reference: [22] Solonnikov, V. A.: On the solvability of the initial-boundary problem for the equations of motion of a viscous compressible fluid.Zap. Nauchn. Semin. Leningrad, Otd. Mat. Inst. Steklova (LOMI) 56 (1976), 128-142. MR 0481666
Reference: [23] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion.Publ. Res. Inst. Math. Sci., Kyoto Univ. 13 (1977), 193-253. Zbl 0366.35070, 10.2977/prims/1195190106
Reference: [24] Vaigant, V. A., Kazhikhov, A. V.: Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers.Differentsial'nye Uravneniya 30 (1994), 1010-1022. MR 1312722
Reference: [25] Yudovich, V. I.: Nichtstationäre Strömung einer idealen inkompressiblen Flüssigkeit.Zh. Vychisl. Mat. Fiz. 3 (1963), 1032-1066 Russian. Zbl 0129.19402
Reference: [26] Yudovich, V. I.: Linearization Method in the Hydrodynamic Stability Theory.Izdatel'stvo Rostovskogo Universiteta Rostov (1984), Russian. Zbl 0553.76038
.

Files

Files Size Format View
AplMat_53-2008-4_4.pdf 341.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo