Previous |  Up |  Next

Article

Title: Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials (English)
Author: Rocca, Elisabetta
Author: Rossi, Riccarda
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 5
Year: 2008
Pages: 485-520
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a {\it strongly nonlinear} internal energy balance equation, governing the evolution of the absolute temperature $\vartheta $, an evolution equation for the phase change parameter $\chi $, including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable ${\bf u}$. The main novelty of the model is that the equations for $\chi $ and ${\bf u}$ are coupled in such a way as to take into account the fact that the properties of the viscous and of the elastic parts influence the phase transition phenomenon in different ways. However, this brings about an elliptic degeneracy in the equation for ${\bf u}$ which needs to be carefully handled. \endgraf First, we prove a global well-posedness result for the related initial-boundary value problem. Secondly, we address the long-time behavior of the solutions in a simplified situation. We prove that the $\omega $-limit set of the solution trajectories is nonempty, connected and compact in a suitable topology, and that its elements solve the steady state system associated with the evolution problem. (English)
Keyword: nonlinear and degenerating PDE system
Keyword: global existence
Keyword: uniqueness
Keyword: long-time behavior of solutions
Keyword: $\omega $-limit
Keyword: phase transitions
Keyword: thermoviscoelastic materials
MSC: 35A01
MSC: 35A05
MSC: 35B45
MSC: 35B50
MSC: 35L80
MSC: 76A10
MSC: 80A22
idZBL: Zbl 1177.76018
idMR: MR2469589
DOI: 10.1007/s10492-008-0038-5
.
Date available: 2010-07-20T12:36:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140336
.
Reference: [1] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory.J. Evol. Equ. 1 (2001), 69-84. Zbl 0973.35037, MR 1838321, 10.1007/PL00001365
Reference: [2] Baiocchi, C.: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert.Ann. Mat. Pura Appl., IV. Ser. 76 (1967), 233-304 Italian. Zbl 0153.17202, MR 0223697
Reference: [3] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing Leyden (1976). Zbl 0328.47035, MR 0390843
Reference: [4] Bonetti, E., Bonfanti, G.: Existence and uniqueness of the solution to a 3D thermoviscoelastic system.Electron. J. Differ. Equ. (2003), Electronic. Zbl 1034.74022, MR 1971116
Reference: [5] Bonetti, E., Bonfanti, G.: Asymptotic analysis for vanishing acceleration in a thermoviscoelastic system.Abstr. Appl. Anal. 2005 (2005), 105-120. Zbl 1090.74019, MR 2179438, 10.1155/AAA.2005.105
Reference: [6] Bonetti, E., Bonfanti, G.: Well-posedness results for a model of damage in thermoviscoelastic materials.Ann. Inst. H. Poincaré Anal. Non Linéaire (2008), doi: 10.1016/j.anihpc.2007.05.009. Zbl 1152.35505, MR 2466326, 10.1016/j.anihpc.2007.05.009
Reference: [7] Bonetti, E., Schimperna, G.: Local existence to Frémond's model for damaging in elastic materials.Contin. Mech. Thermodyn. 16 (2004), 319-335. MR 2061321, 10.1007/s00161-003-0152-2
Reference: [8] Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials.J. Differ. Equations 218 (2005), 91-116. Zbl 1078.74048, MR 2174968, 10.1016/j.jde.2005.04.015
Reference: [9] Bonfanti, G., Frémond, M., Luterotti, F.: Global solution to a nonlinear system for irreversible phase changes.Adv. Math. Sci. Appl. 10 (2000), 1-24. MR 1769184
Reference: [10] Brezis, H.: Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies, No. 5 North-Holland, Elsevier Amsterdam-London, New York (1973), French. Zbl 0252.47055, MR 0348562
Reference: [11] Colli, P., Laurençot, P.: Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws.Physica D 111 (1998), 311-334. MR 1601442, 10.1016/S0167-2789(97)80018-8
Reference: [12] Feireisl, E., Schimperna, G.: Large time behaviour of solutions to Penrose-Fife phase change models.Math. Methods Appl. Sci. 28 (2005), 2117-2132. Zbl 1079.35021, MR 2176909, 10.1002/mma.659
Reference: [13] Feireisl, E., Simondon, F.: Convergence for semilinear degenerate parabolic equations in several space dimensions.J. Dyn. Differ. Equations 12 (2000), 647-673. Zbl 0977.35069, MR 1800136, 10.1023/A:1026467729263
Reference: [14] Frémond, M.: Non-smooth Thermomechanics.Springer Berlin (2002). Zbl 0990.80001, MR 1885252
Reference: [15] Frémond, M.: Phase change in mechanics. Lecture notes of XXX Scuola estiva di Fisica Matematica, Ravello, 2005.(to appear).
Reference: [16] Germain, P.: Cours de mécanique des milieux continus. Tome I: Théorie générale.Masson Paris (1973), French. Zbl 0254.73001, MR 0368541
Reference: [17] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential.Z. Anal. Anwend. 25 (2006), 51-72. Zbl 1128.35021, MR 2216881, 10.4171/ZAA/1277
Reference: [18] Horn, W., Sprekels, J., Zheng, S.: Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets.Adv. Math. Sci. Appl. 6 (1996), 227-241. Zbl 0858.35053, MR 1385769
Reference: [19] Krejčí, P., Rocca, E., Sprekels, J.: Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions.J. London Math. Soc. 76 (2007), 197-210. MR 2351617, 10.1112/jlms/jdm032
Reference: [20] Krejčí, P., Sprekels, J., Stefanelli, U.: Phase-field models with hysteresis in one-dimensional thermoviscoplasticity.SIAM J. Math. Anal. 34 (2002), 409-434. Zbl 1034.34053, MR 1951781, 10.1137/S0036141001387604
Reference: [21] Krejčí, P., Sprekels, J., Stefanelli, U.: One-dimensional thermo-viscoplastic processes with hysteresis and phase transitions.Adv. Math. Sci. Appl. 13 (2003), 695-712. Zbl 1049.74036, MR 2029939
Reference: [22] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [23] Luterotti, F., Stefanelli, U.: Existence result for the one-dimensional full model of phase transitions.Z. Anal. Anwend. 21 (2002), 335-350. Zbl 1003.80003, MR 1915265, 10.4171/ZAA/1081
Reference: [24] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 (2004), 545-582. Zbl 1050.35113, MR 2041814, 10.1002/mma.464
Reference: [25] Nirenberg, L.: On elliptic partial differential equations.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 123 (1959), 115-162. Zbl 0088.07601, MR 0109940
Reference: [26] Rocca, E., Rossi, R.: Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials.J. Differ. Equations (2008), doi: 10.1016/j.jde.2008.02.006. Zbl 1151.74029, MR 2460027, 10.1016/j.jde.2008.02.006
Reference: [27] Simon, J.: Compact sets in the space {$L^p(0,T;B)$}.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. MR 0916688
Reference: [28] Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems.Ann. Math. 118 (1983), 525-571. Zbl 0549.35071, MR 0727703, 10.2307/2006981
Reference: [29] Stefanelli, U.: Models of phase change with microscopic movements.PhD. Thesis University of Pavia (2003).
.

Files

Files Size Format View
AplMat_53-2008-5_6.pdf 425.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo