Previous |  Up |  Next

Article

Title: Time-dependent electromagnetic waves in a cavity (English)
Author: Kjellmert, Bo
Author: Strömberg, Thomas
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 1
Year: 2009
Pages: 17-45
Summary lang: English
.
Category: math
.
Summary: The electromagnetic initial-boundary value problem for a cavity enclosed by perfectly conducting walls is considered. The cavity medium is defined by its permittivity and permeability which vary continuously in space. The electromagnetic field comes from a source in the cavity. The field is described by a magnetic vector potential ${\bf A}$ satisfying a wave equation with initial-boundary conditions. This description through ${\bf A}$ is rigorously shown to give a unique solution of the problem and is the starting point for numerical computations. A Chebyshev collocation solver has been implemented for a cubic cavity, and it has been compared to a standard finite element solver. The results obtained are consistent while the collocation solver performs substantially faster. Some time histories and spectra are computed. (English)
Keyword: time-dependent electromagnetic field
Keyword: cavity
Keyword: vector and scalar potentials
Keyword: Lorenz gauge
Keyword: Chebyshev collocation
MSC: 35Q60
MSC: 65M70
MSC: 78A25
MSC: 78A40
MSC: 78M22
idZBL: Zbl 1212.78005
idMR: MR2476019
DOI: 10.1007/s10492-009-0002-z
.
Date available: 2010-07-20T12:43:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140347
.
Reference: [1] Assous, F., P. Ciarlet, Jr., Labrunie, S., Segre, J.: Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The singular complement method.J. Comput. Phys. 191 (2003), 147-176. Zbl 1033.65086, MR 2008488, 10.1016/S0021-9991(03)00309-7
Reference: [2] Assous, F., Degond, P., Heintze, E., Raviart, P.-A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations.J. Comput. Phys. 109 (1993), 222-237. Zbl 0795.65087, MR 1253460, 10.1006/jcph.1993.1214
Reference: [3] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3: Spectral Theory and Applications.Springer Berlin (1990). MR 1064315
Reference: [4] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I.Springer Berlin (1992). Zbl 0755.35001, MR 1156075
Reference: [5] Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften, 219.Springer Berlin-New York (1976). MR 0521262
Reference: [6] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics, 19.American Mathematical Society (AMS) Providence (1998). MR 1625845
Reference: [7] Hughes, T. J. R.: The Finite Element Method. Linear static and Dynamic Finite Element Analysis.Prentice-Hall Englewood Cliffs (1987). Zbl 0634.73056, MR 1008473
Reference: [8] Jiang, B., Wu, J., Povinelli, L. A.: The origin of spurious solutions in computational electromagnetics.J. Comput. Phys. 125 (1996), 104-123. Zbl 0848.65086, MR 1381806, 10.1006/jcph.1996.0082
Reference: [9] Ku, H. L., Hatziavramidis, D.: Chebyshev expansion methods for the solution of the extended Graetz problem.J. Comput. Phys. 56 (1984), 495-512. Zbl 0572.76084, MR 0768673, 10.1016/0021-9991(84)90109-8
Reference: [10] Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model.J. Comput. Phys. 161 (2000), 484-511. MR 1764247, 10.1006/jcph.2000.6507
Reference: [11] Panofsky, W. K. H., Phillips, M.: Classical Electricity and Magnetism, 2nd ed.Addison-Wesley Reading (1962). Zbl 0122.21401, MR 0135824
Reference: [12] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44.Springer New York (1983). MR 0710486
Reference: [13] Wloka, J.: Partial Differential Equations.Cambridge University Press Cambridge (1987). Zbl 0623.35006, MR 0895589
Reference: [14] : COMSOL$^{®}$, The COMSOL AB's homepage, www.comsol.com.. Zbl 1220.65080
Reference: [15] : MATLAB$^{®}$, The MathWorks, Inc. MATLAB's homepage, www.mathworks.com.. Zbl 1234.92044
.

Files

Files Size Format View
AplMat_54-2009-1_2.pdf 465.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo