Previous |  Up |  Next

Article

Title: Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods (English)
Author: Jia, Shanghui
Author: Xie, Hehu
Author: Yin, Xiaobo
Author: Gao, Shaoqin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 1
Year: 2009
Pages: 1-15
Summary lang: English
.
Category: math
.
Summary: In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, $Q_1^{{\rm rot}}$ and $EQ_1^{{\rm rot}}$. Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. (English)
Keyword: Stokes eigenvalue problem
Keyword: stream function-vorticity-pressure method
Keyword: asymptotic expansion
Keyword: extrapolation
Keyword: a posteriori error estimates
Keyword: nonconforming finite element methods
Keyword: convergence
MSC: 35A35
MSC: 35P05
MSC: 35P15
MSC: 35Q30
MSC: 35Q35
MSC: 65N12
MSC: 65N15
MSC: 65N25
MSC: 65N30
MSC: 76D07
MSC: 76M10
idZBL: Zbl 1212.65434
idMR: MR2476018
DOI: 10.1007/s10492-009-0001-0
.
Date available: 2010-07-20T12:42:54Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140344
.
Reference: [1] Babuška, I., Osborn, J. F.: Estimate for the errors in eigenvalue and eigenvector approximation by Galerkin methods with particular attention to the case of multiple eigenvalue.SIAM J. Numer. Anal. 24 (1987), 1249-1276. MR 0917451, 10.1137/0724082
Reference: [2] Babuška, I., Osborn, J. F.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems.Math. Comput. 52 (1989), 275-297. MR 0962210, 10.1090/S0025-5718-1989-0962210-8
Reference: [3] Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables.Numer. Math. 33 (1979), 211-224. Zbl 0423.65058, MR 0549450, 10.1007/BF01399555
Reference: [4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15.Springer New York (1991). MR 1115205, 10.1007/978-1-4612-3172-1_1
Reference: [5] Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method.Appl. Math. 51 (2006), 73-88. Zbl 1164.65489, MR 2197324, 10.1007/s10492-006-0006-x
Reference: [6] Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme.Adv. Comput. Math. 27 (2007), 95-106. Zbl 1122.65106, MR 2317923, 10.1007/s10444-007-9031-x
Reference: [7] Chen, Z.: Finite Element Methods and Their Applications.Springer Berlin (2005). Zbl 1082.65118, MR 2158541
Reference: [8] Ciarlet, P.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [9] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Berlin (1986). Zbl 0585.65077, MR 0851383
Reference: [10] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes problem. I. Convergence of the approximate solution.Numer. Math. 33 (1979), 397-424. MR 0553350
Reference: [11] Han, H.: Nonconforming elements in the mixed finite element method.J. Comput. Math. 2 (1984), 223-233. Zbl 0573.65083, MR 0815417
Reference: [12] Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods.Numer. Methods Partial Differ. Equations 24 (2008), 435-448. Zbl 1151.65086, MR 2382790, 10.1002/num.20268
Reference: [13] Křížek, M.: Conforming finite element approximation of the Stokes problem.Banach Cent. Publ. 24 (1990), 389-396. MR 1097422, 10.4064/-24-1-389-396
Reference: [14] Lin, Q., Huang, H., Li, Z.: New expansion of numerical eigenvalue for $-\Delta u=\lambda\rho u$ by nonconforming elements.Math. Comput. 77 (2008), 2061-2084. MR 2429874, 10.1090/S0025-5718-08-02098-X
Reference: [15] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement.China Sci. Press Beijing (2006).
Reference: [16] Lin, Q., Lü, T.: Asymptotic expansions for finite element eigenvalues and finite element solution.Bonn. Math. Schrift 158 (1984), 1-10. MR 0793412
Reference: [17] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Press Hebei (1996), Chinese.
Reference: [18] Lin, Q., Zhang, S., Yan, N.: Extrapolation and defect correction for diffusion equations with boundary integral conditions.Acta Math. Sci. 17 (1997), 405-412. Zbl 0907.65096, MR 1613231, 10.1016/S0252-9602(17)30859-7
Reference: [19] Lin, Q., Zhu, Q.: Preprocessing and Postprocessing for the Finite Element Method.Shanghai Sci. Tech. Publishers Shanghai (1994), Chinese.
Reference: [20] Mercier, B., Osborn, J., Rappaz, J., Raviat, P.-A.: Eigenvalue approximation by mixed and hybrid method.Math. Comput. 36 (1981), 427-453. MR 0606505, 10.1090/S0025-5718-1981-0606505-9
Reference: [21] Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97-111. Zbl 0742.76051, MR 1148797, 10.1002/num.1690080202
Reference: [22] Shaidurov, V.: Multigrid Methods for Finite Elements.Kluwer Academic Publishers Dordrecht (1995). Zbl 0837.65118, MR 1335921
Reference: [23] Wang, J., Ye, X.: Superconvergence of finite element approximations for the Stokes problem by projection methods.SIAM J. Numer. Anal. 39 (2001), 1001-1013. Zbl 1002.65118, MR 1860454, 10.1137/S003614290037589X
Reference: [24] Yang, Y.: An Analysis of the Finite Element Method for Eigenvalue Problems.Guizhou People Public Press Guizhou (2004), Chinese.
Reference: [25] Ye, X.: Superconvergence of nonconforming finite element method for the Stokes equations.Numer. Methods Partial Differ. Equations 18 (2002), 143-154. Zbl 1003.65121, MR 1902289, 10.1002/num.1036
Reference: [26] Zhou, A., Li, J.: The full approximation accuracy for the stream function-vorticity-pressure method.Numer. Math. 68 (1994), 427-435. Zbl 0823.65110, MR 1313153, 10.1007/s002110050070
.

Files

Files Size Format View
AplMat_54-2009-1_1.pdf 264.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo