Previous |  Up |  Next

Article

Title: A self-adaptive trust region method for the extended linear complementarity problems (English)
Author: Yu, Zhensheng
Author: Li, Qiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 1
Year: 2009
Pages: 53-65
Summary lang: English
.
Category: math
.
Summary: By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under strict complementarity conditions. (English)
Keyword: extended linear complementarity
Keyword: self-adaptive trust region method
Keyword: global convergence
Keyword: local superlinear convergence
Keyword: trust region algorithm
MSC: 65K05
MSC: 65K10
MSC: 90C30
MSC: 90C33
MSC: 90C51
idZBL: Zbl 1212.65239
idMR: MR2476021
DOI: 10.1007/s10492-009-0004-x
.
Date available: 2010-07-20T12:46:30Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140349
.
Reference: [1] Andreani, R., Martínez, J. M.: On the solution of the extended linear complementarity problem.Linear Algebra Appl. 281 (1998), 247-257. MR 1645363
Reference: [2] Bonnans, J. F., Gonzaga, C. C.: Convergence of interior point algorithms for the monotone linear complementarity problem.Math. Oper. Res. 21 (1996), 1-25. Zbl 0846.90109, MR 1385864, 10.1287/moor.21.1.1
Reference: [3] Clarke, F. H.: Optimization and Nonsmooth Analysis, 2nd ed. Classic Appl. Math. 5.SIAM Philadephia (1990). MR 1058436
Reference: [4] Conn, A. R., Gould, N. I. M., Toint, P. H.: Trust-Region Methods.SIAM Philadelphia (2000). Zbl 0958.65071, MR 1774899
Reference: [5] Cottle, R. W., Pang, J.-S., Stone, R. E.: The Linear Complementarity Problem.Academic Press Boston (1992). Zbl 0757.90078, MR 1150683
Reference: [6] Dennis, J. E., Schnabel, R. B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations.Prentice-Hall Englewood Cliffs (1983). Zbl 0579.65058, MR 0702023
Reference: [7] Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm.SIAM J. Optim. 7 (1997), 225-247. Zbl 0873.90096, MR 1430565, 10.1137/S1052623494279110
Reference: [8] Fan, J. Y., Yuan, Y. X.: A new trust region algorithm with trust region radius converging to zero.In: Proceedings of the 5th International Conference on Optimization: Techniques and Applications (Hongkong, December 2001) D. Li Hongkong (2001), 786-794. MR 3522937
Reference: [9] Fischer, A.: A special Newton-type optimization method.Optimization 24 (1992), 269-284. Zbl 0814.65063, MR 1247636, 10.1080/02331939208843795
Reference: [10] Fischer, A.: An NCP-function and its use for the solution of complementarity problems.D.-Z. Du, L. Qi, R. Womersley Recent Advances in Nonsmooth Optimization World Scientific Singapore (1995), 88-105. Zbl 0948.90133, MR 1459996
Reference: [11] Gowda, M. S.: Reducing a monotone horizontal LCP to an LCP.Appl. Math. Lett. 8 (1995), 97-100. Zbl 0813.65092, MR 1355159, 10.1016/0893-9659(94)00118-V
Reference: [12] Gowda, M. S.: On the extended linear complementarity problem.Math. Program. 72 (1996), 33-50. Zbl 0853.90109, MR 1385162, 10.1007/BF02592330
Reference: [13] G'{u}ler, O.: Generalized linear complementarity problem.Math. Oper. Res. 20 (1995), 441-448. MR 1342954, 10.1287/moor.20.2.441
Reference: [14] Hei, L.: A self-adaptive trust region algorithm.J. Comput. Math. 21 (2003), 229-236. Zbl 1028.65072, MR 1967988
Reference: [15] Jiang, H., Fukushima, M., Qi, L., Sun, D.: A trust region method for solving generalized complementarity problems.SIAM J. Optim. 8 (1998), 140-157. Zbl 0911.90324, MR 1617440, 10.1137/S1052623495296541
Reference: [16] Kanzow, C., Zupke, M.: Inexact trust-region methods for nonlinear complementarity problems.M. Fukushima, L. Qi Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods Kluwer Academic Publishers Norwell (1999), 211-233. Zbl 0927.65083, MR 1682704
Reference: [17] Kanzow, C.: On a semismooth least squares formulation of complementarity problem with gap reduction.Optim. Method Softw. 19 (2004), 507-525. MR 2095350, 10.1080/10556780410001683096
Reference: [18] Kanzow, C., Pieper, H.: Jacobian smoothing methods for nonlinear complementarity problems.SIAM J. Optim. 9 (1999), 342-373. Zbl 0986.90065, MR 1686823, 10.1137/S1052623497328781
Reference: [19] Mangasarian, O. L., Pang, J. S.: The extended linear complementarity problem.SIAM J. Matrix Anal. Appl. 16 (1995), 359-368. Zbl 0835.90103, MR 1321784, 10.1137/S0895479893262734
Reference: [20] Powell, M. J. D.: Convergence properties of a class of minimization algorithms.In: Nonlinear Programming O. L. Mangasarian, R. R. Meyer, S. M. Robinson Academic Press New York (1975), 1-27. Zbl 0321.90045, MR 0386270
Reference: [21] Qi, H. D., Qi, L., Sun, D. F.: Solving Karush-Kuhn-Tucker systems via the trust region and conjugate gradient methods.SIAM J. Optim. 14 (2003), 439-463. MR 2048162, 10.1137/S105262340038256X
Reference: [22] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227-244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227
Reference: [23] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program. 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275
Reference: [24] Sartenaer, A.: Automatic determination of an initial trust region in nonlinear programming.SIAM J. Sci. Comput. 18 (1997), 1788-1803. Zbl 0891.90151, MR 1480635, 10.1137/S1064827595286955
Reference: [25] Sznajder, R., Gowda, M. S.: Generalizations of $P_0$ and {\bf P}-properties; extended vertical and horizontal linear complementarity problems.Linear Algebra Appl. 94 (1997), 449-467.
Reference: [26] Solodov, M. V.: Some optimization reformulations of the extended linear complementarity problem.Comput. Optim. Appl. 13 (1999), 187-200. Zbl 1040.90550, MR 1704119, 10.1023/A:1008684732567
Reference: [27] Ulbrich, M.: Nonmonotone trust-region methods for bound-constrained semismooth equation with application to nonlinear mixed complementarity problems.SIAM J. Optim. 11 (2001), 889-917. MR 1855213, 10.1137/S1052623499356344
Reference: [28] Xiu, N. H., Zhang, J. Z.: A smoothing Gauss-Newton method for the generalized HLCP.J. Comput. Appl. Math. 129 (2001), 195-208. Zbl 0985.65070, MR 1823218, 10.1016/S0377-0427(00)00550-1
Reference: [29] Zhang, J. Z., Xiu, N. H.: Global $s$-type error bound for the extended linear complementarity problem and its applications.Math. Program. 88 (2000), 391-410. MR 1783980, 10.1007/s101070050023
Reference: [30] Zhang, X. S., Zhang, J. L., Liao, L. Z.: An adaptive trust region method and its convergence.Sci. China, Ser. A 45 (2002), 620-631. Zbl 1105.90361, MR 1911178
Reference: [31] Zhang, J. L., Zhang, X. S.: A smoothing Levenberg-Marquardt method for NCP.Appl. Math. Comput. 178 (2006), 212-228. Zbl 1104.65061, MR 2248482, 10.1016/j.amc.2005.11.036
.

Files

Files Size Format View
AplMat_54-2009-1_4.pdf 267.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo