Previous |  Up |  Next

Article

Title: Estimating an even spherical measure from its sine transform (English)
Author: Hoffmann, Lars Michael
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 1
Year: 2009
Pages: 67-78
Summary lang: English
.
Category: math
.
Summary: To reconstruct an even Borel measure on the unit sphere from finitely many values of its sine transform a least square estimator is proposed. Applying results by Gardner, Kiderlen and Milanfar we estimate its rate of convergence and prove strong consistency. We close this paper by giving an estimator for the directional distribution of certain three-dimensional stationary Poisson processes of convex cylinders which have applications in material science. (English)
Keyword: Boolean model
Keyword: convex cylinder
Keyword: direction distribution
Keyword: least square estimator
Keyword: parameter estimation
Keyword: Poisson process
Keyword: spherical measure
Keyword: sine transform
MSC: 52A22
MSC: 60D05
MSC: 60G10
MSC: 62H11
MSC: 62M30
MSC: 65D15
idZBL: Zbl 1211.62092
idMR: MR2476022
DOI: 10.1007/s10492-009-0005-9
.
Date available: 2010-07-20T12:47:24Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140350
.
Reference: [1] Billingsley, P.: Convergence of Probability Measures.Wiley New York (1968). Zbl 0172.21201, MR 0233396
Reference: [2] Gardner, R. J., Kiderlen, M., Milanfar, P.: Convergence of algorithms for reconstructing convex bodies and directional measures.Ann. Stat. 34 (2006), 1331-1374. Zbl 1097.52503, MR 2278360, 10.1214/009053606000000335
Reference: [3] Hoffmann, L. M.: Mixed measures of convex cylinders and quermass densities of Boolean models.Submitted. Zbl 1180.52011
Reference: [4] Hug, D., Schneider, R.: Stability results involving surface area measures of convex bodies.Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II (2002), 21-51. Zbl 1113.52013, MR 1962583
Reference: [5] Kallenberg, O.: Foundations of Modern Probability, 2nd. ed.Springer New York (2002). Zbl 0996.60001, MR 1876169
Reference: [6] Kiderlen, M.: Non-parametric estimation of the directional distribution of stationary line and fibre processes.Adv. Appl. Probab. 33 (2001), 6-24. Zbl 0998.62080, MR 1825313, 10.1239/aap/999187894
Reference: [7] Kiderlen, M., Pfrang, A.: Algorithms to estimate the rose of directions of a spatial fibre system.J. Microsc. 219 (2005), 50-60. MR 2196184, 10.1111/j.1365-2818.2005.01493.x
Reference: [8] Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., Ohser, J.: Design of accoustic trim based on geometric modeling and flow simulation for non-woven.Comp. Mat. Sci. 38 (2006), 56-66. 10.1016/j.commatsci.2006.01.018
Reference: [9] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory.Cambridge University Press Cambridge (1993). Zbl 0798.52001, MR 1216521
Reference: [10] Schneider, R., Weil, W.: Integralgeometrie.Teubner Stuttgart (1992), German. Zbl 0762.52001, MR 1203777
Reference: [11] Schneider, R., Weil, W.: Stochastische Geometrie.Teubner Stuttgart (2000), German. Zbl 0964.52009, MR 1794753
Reference: [12] Spiess, M., Spodarev, E.: Anisotropic dilated Poisson $k$-flat processes.Submitted.
Reference: [13] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications, 2nd ed.John Wiley & Sons Chichester (1995). Zbl 0838.60002, MR 0895588
.

Files

Files Size Format View
AplMat_54-2009-1_5.pdf 271.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo