[1] Andreev, A. B., Lazarov, R. D., Racheva, M. R.:
Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182 (2005), 333-349.
DOI 10.1016/j.cam.2004.12.015 |
MR 2147872 |
Zbl 1075.65136
[3] Babuška, I., Osborn, J.:
Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1) J.-L. Lions, P. G. Ciarlet North-Holland Amsterdam (1991), 641-787.
DOI 10.1016/S1570-8659(05)80042-0 |
MR 1115240
[4] Bacuta, C., Bramble, J. H.:
Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain. Z. Angew. Math. Phys. (Special issue dedicated to Lawrence E. Payne) 54 (2003), 874-878.
DOI 10.1007/s00033-003-3211-4 |
MR 2019187
[5] Bacuta, C., Bramble, J. H., Pasciak, J. E.:
Shift theorems for the biharmonic Dirichlet problem. In: Recent Progress in Computational and Appl. PDEs. Proceedings of the International Symposium on Computational and Applied PDEs, Zhangiajie, China, July 1-7, 2001 Kluwer Academic/Plenum Publishers New York (2001).
MR 2039554
[8] Brenner, S. C., Scott, R. L.:
The Mathematical Theory of Finite Element Methods. Springer New York (1994).
MR 1278258 |
Zbl 0804.65101
[9] Brezzi, F., Fortin, M.:
Mixed and Hybrid Finite Element Methods. Springer New York (1991).
MR 1115205 |
Zbl 0788.73002
[10] Chatelin, F.:
Spectral Approximation of Linear Operators. Academic Press New York (1983).
MR 0716134 |
Zbl 0517.65036
[12] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problem. North-Holland Amsterdam (1978).
MR 0520174
[13] Fabes, E. B., Kenig, C. E., Verchota, G. C.:
The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57 (1998), 769-793.
MR 0975121
[14] Girault, V., Raviart, P.:
Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Berlin (1986).
MR 0851383 |
Zbl 0585.65077
[15] Grisvard, P.: Singularities in Boundary Problems. Masson and Springer Paris (1985).
[18] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. China Sci. Tech. Press Beijing (2005).
[19] Lin, Q., Lü, T.:
Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn. Math. Schr. 158 (1984), 1-10.
MR 0793412
[20] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers Baoding (1995).
[22] Osborn, J.:
Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976), 185-197.
DOI 10.1137/0713019 |
MR 0447842 |
Zbl 0334.76010