Previous |  Up |  Next

Article

Keywords:
Stokes eigenvalue problem; mixed finite element method; Rayleigh quotient formula; postprocessing
Summary:
In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space.
References:
[1] Andreev, A. B., Lazarov, R. D., Racheva, M. R.: Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182 (2005), 333-349. DOI 10.1016/j.cam.2004.12.015 | MR 2147872 | Zbl 1075.65136
[2] Babuška, I., Osborn, J. E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989), 275-297. DOI 10.1090/S0025-5718-1989-0962210-8 | MR 0962210
[3] Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1) J.-L. Lions, P. G. Ciarlet North-Holland Amsterdam (1991), 641-787. DOI 10.1016/S1570-8659(05)80042-0 | MR 1115240
[4] Bacuta, C., Bramble, J. H.: Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain. Z. Angew. Math. Phys. (Special issue dedicated to Lawrence E. Payne) 54 (2003), 874-878. DOI 10.1007/s00033-003-3211-4 | MR 2019187
[5] Bacuta, C., Bramble, J. H., Pasciak, J. E.: Shift theorems for the biharmonic Dirichlet problem. In: Recent Progress in Computational and Appl. PDEs. Proceedings of the International Symposium on Computational and Applied PDEs, Zhangiajie, China, July 1-7, 2001 Kluwer Academic/Plenum Publishers New York (2001). MR 2039554
[6] Bernardi, C., Raugel, B.: Analysis of some finite elements of the Stokes problem. Math. Comput. 44 (1985), 71-79. DOI 10.1090/S0025-5718-1985-0771031-7 | MR 0771031
[7] Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980), 556-581. DOI 10.1002/mma.1670020416 | MR 0595625 | Zbl 0445.35023
[8] Brenner, S. C., Scott, R. L.: The Mathematical Theory of Finite Element Methods. Springer New York (1994). MR 1278258 | Zbl 0804.65101
[9] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer New York (1991). MR 1115205 | Zbl 0788.73002
[10] Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press New York (1983). MR 0716134 | Zbl 0517.65036
[11] Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method. Appl. Math. 51 (2006), 73-88. DOI 10.1007/s10492-006-0006-x | MR 2197324 | Zbl 1164.65489
[12] Ciarlet, P. G.: The Finite Element Method for Elliptic Problem. North-Holland Amsterdam (1978). MR 0520174
[13] Fabes, E. B., Kenig, C. E., Verchota, G. C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57 (1998), 769-793. MR 0975121
[14] Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Berlin (1986). MR 0851383 | Zbl 0585.65077
[15] Grisvard, P.: Singularities in Boundary Problems. Masson and Springer Paris (1985).
[16] Křížek, M.: Conforming finite element approximation of the Stokes problem. Banach Cent. Publ. 24 (1990), 389-396. DOI 10.4064/-24-1-389-396 | MR 1097422
[17] Lin, Q., Huang, H., Li, Z.: New expansion of numerical eigenvalue for $-\Delta u=\lambda\rho u$ by nonconforming elements. Math. Comput. 77 (2008), 2061-2084. DOI 10.1090/S0025-5718-08-02098-X | MR 2429874
[18] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. China Sci. Tech. Press Beijing (2005).
[19] Lin, Q., Lü, T.: Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn. Math. Schr. 158 (1984), 1-10. MR 0793412
[20] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers Baoding (1995).
[21] Mercier, B., Osborn, J., Rappaz, J., Raviart, P. A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36 (1981), 427-453. DOI 10.1090/S0025-5718-1981-0606505-9 | MR 0606505 | Zbl 0472.65080
[22] Osborn, J.: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976), 185-197. DOI 10.1137/0713019 | MR 0447842 | Zbl 0334.76010
[23] Racheva, M. R., Andreev, A. B.: Superconvergence postprocessing for eigenvalues. Comput. Methods Appl. Math. 2 (2002), 171-185. DOI 10.2478/cmam-2002-0011 | MR 1930846 | Zbl 1012.65113
[24] Wieners, C.: A numerical existence proof of nodal lines for the first eigenfunction of the plate equation. Arch. Math. 66 (1996), 420-427. DOI 10.1007/BF01781561 | MR 1383907 | Zbl 0854.65092
[25] Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70 (2001), 17-25. DOI 10.1090/S0025-5718-99-01180-1 | MR 1677419 | Zbl 0959.65119
Partner of
EuDML logo