Previous |  Up |  Next

Article

Title: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems (English)
Author: Chen, Hongtao
Author: Jia, Shanghui
Author: Xie, Hehu
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 3
Year: 2009
Pages: 237-250
Summary lang: English
.
Category: math
.
Summary: In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space. (English)
Keyword: Stokes eigenvalue problem
Keyword: mixed finite element method
Keyword: Rayleigh quotient formula
Keyword: postprocessing
MSC: 35P15
MSC: 65B99
MSC: 65L15
MSC: 65N12
MSC: 65N25
MSC: 65N30
idZBL: Zbl 1212.65431
idMR: MR2530541
DOI: 10.1007/s10492-009-0015-7
.
Date available: 2010-07-20T13:01:19Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140362
.
Reference: [1] Andreev, A. B., Lazarov, R. D., Racheva, M. R.: Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems.J. Comput. Appl. Math. 182 (2005), 333-349. Zbl 1075.65136, MR 2147872, 10.1016/j.cam.2004.12.015
Reference: [2] Babuška, I., Osborn, J. E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems.Math. Comput. 52 (1989), 275-297. MR 0962210, 10.1090/S0025-5718-1989-0962210-8
Reference: [3] Babuška, I., Osborn, J.: Eigenvalue problems.In: Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1) J.-L. Lions, P. G. Ciarlet North-Holland Amsterdam (1991), 641-787. MR 1115240, 10.1016/S1570-8659(05)80042-0
Reference: [4] Bacuta, C., Bramble, J. H.: Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain.Z. Angew. Math. Phys. (Special issue dedicated to Lawrence E. Payne) 54 (2003), 874-878. MR 2019187, 10.1007/s00033-003-3211-4
Reference: [5] Bacuta, C., Bramble, J. H., Pasciak, J. E.: Shift theorems for the biharmonic Dirichlet problem.In: Recent Progress in Computational and Appl. PDEs. Proceedings of the International Symposium on Computational and Applied PDEs, Zhangiajie, China, July 1-7, 2001 Kluwer Academic/Plenum Publishers New York (2001). MR 2039554
Reference: [6] Bernardi, C., Raugel, B.: Analysis of some finite elements of the Stokes problem.Math. Comput. 44 (1985), 71-79. MR 0771031, 10.1090/S0025-5718-1985-0771031-7
Reference: [7] Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners.Math. Methods Appl. Sci. 2 (1980), 556-581. Zbl 0445.35023, MR 0595625, 10.1002/mma.1670020416
Reference: [8] Brenner, S. C., Scott, R. L.: The Mathematical Theory of Finite Element Methods.Springer New York (1994). Zbl 0804.65101, MR 1278258
Reference: [9] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer New York (1991). Zbl 0788.73002, MR 1115205
Reference: [10] Chatelin, F.: Spectral Approximation of Linear Operators.Academic Press New York (1983). Zbl 0517.65036, MR 0716134
Reference: [11] Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method.Appl. Math. 51 (2006), 73-88. Zbl 1164.65489, MR 2197324, 10.1007/s10492-006-0006-x
Reference: [12] Ciarlet, P. G.: The Finite Element Method for Elliptic Problem.North-Holland Amsterdam (1978). MR 0520174
Reference: [13] Fabes, E. B., Kenig, C. E., Verchota, G. C.: The Dirichlet problem for the Stokes system on Lipschitz domains.Duke Math. J. 57 (1998), 769-793. MR 0975121
Reference: [14] Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Berlin (1986). Zbl 0585.65077, MR 0851383
Reference: [15] Grisvard, P.: Singularities in Boundary Problems.Masson and Springer Paris (1985).
Reference: [16] Křížek, M.: Conforming finite element approximation of the Stokes problem.Banach Cent. Publ. 24 (1990), 389-396. MR 1097422, 10.4064/-24-1-389-396
Reference: [17] Lin, Q., Huang, H., Li, Z.: New expansion of numerical eigenvalue for $-\Delta u=\lambda\rho u$ by nonconforming elements.Math. Comput. 77 (2008), 2061-2084. MR 2429874, 10.1090/S0025-5718-08-02098-X
Reference: [18] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement.China Sci. Tech. Press Beijing (2005).
Reference: [19] Lin, Q., Lü, T.: Asymptotic expansions for finite element eigenvalues and finite element solution.Bonn. Math. Schr. 158 (1984), 1-10. MR 0793412
Reference: [20] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers Baoding (1995).
Reference: [21] Mercier, B., Osborn, J., Rappaz, J., Raviart, P. A.: Eigenvalue approximation by mixed and hybrid methods.Math. Comput. 36 (1981), 427-453. Zbl 0472.65080, MR 0606505, 10.1090/S0025-5718-1981-0606505-9
Reference: [22] Osborn, J.: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations.SIAM J. Numer. Anal. 13 (1976), 185-197. Zbl 0334.76010, MR 0447842, 10.1137/0713019
Reference: [23] Racheva, M. R., Andreev, A. B.: Superconvergence postprocessing for eigenvalues.Comput. Methods Appl. Math. 2 (2002), 171-185. Zbl 1012.65113, MR 1930846, 10.2478/cmam-2002-0011
Reference: [24] Wieners, C.: A numerical existence proof of nodal lines for the first eigenfunction of the plate equation.Arch. Math. 66 (1996), 420-427. Zbl 0854.65092, MR 1383907, 10.1007/BF01781561
Reference: [25] Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17-25. Zbl 0959.65119, MR 1677419, 10.1090/S0025-5718-99-01180-1
.

Files

Files Size Format View
AplMat_54-2009-3_5.pdf 275.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo