Previous |  Up |  Next

Article

Title: Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems (English)
Author: Karátson, János
Author: Korotov, Sergey
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 4
Year: 2009
Pages: 297-336
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed on an abstract level, we present a general technology for constructing computable sharp upper bounds for the global error for various particular classes of elliptic problems. Here the global error is understood as a suitable energy type difference between the true and computed solutions. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions, and are sharp in the sense that they can be, in principle, made as close to the true error as resources of the used computer allow. The latter can be achieved by suitably tuning the auxiliary parameter functions, involved in the proposed upper error bounds, in the course of the calculations. (English)
Keyword: a posteriori error estimation
Keyword: error control in energy norm
Keyword: error estimates of functional type
Keyword: elliptic equation of second order
Keyword: elliptic equation of fourth order
Keyword: second order elasticity system
Keyword: mixed boundary conditions
Keyword: gradient averaging
MSC: 49J20
MSC: 49M30
MSC: 65J05
MSC: 65J15
MSC: 65K10
MSC: 65M60
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1212.65249
idMR: MR2520833
DOI: 10.1007/s10492-009-0020-x
.
Date available: 2010-07-20T13:10:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140367
.
Reference: [1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.John Wiley & Sons (2000). Zbl 1008.65076, MR 1885308
Reference: [2] Axelsson, O., Padiy, A.: On a two-level Newton-type procedure applied for solving non-linear elasticity problems.Int. J. Numer. Methods Eng. 49 (2000), 1479-1493. Zbl 0994.74066, MR 1797720, 10.1002/1097-0207(20001230)49:12<1479::AID-NME4>3.0.CO;2-4
Reference: [3] Axelsson, O., Maubach, J.: On the updating and assembly of the Hessian matrix in finite elements.Comput. Methods Appl. Mech. Eng. 71 (1988), 41-67. MR 0967153, 10.1016/0045-7825(88)90095-3
Reference: [4] Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability.Oxford University Press New York (2001). MR 1857191
Reference: [5] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich.Birkhäuser Basel (2003). MR 1960405
Reference: [6] Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic approach and examples.East-West J. Numer. Math. 4 (1996), 237-264. MR 1430239
Reference: [7] Blaheta, R.: Multilevel Newton methods for nonlinear problems with applications to elasticity.Copernicus 940820. Technical report.
Reference: [8] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489
Reference: [9] Carstensen, C., Funken, S. A.: Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods.East-West J. Numer. Math. 8 (2000), 153-175. Zbl 0973.65091, MR 1807259
Reference: [10] Ciarlet, Ph. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications Vol. 4.North-Holland Publishing Amsterdam-New York-Oxford (1978). MR 0520174
Reference: [11] Concus, P.: Numerical solution of the nonlinear magnetostatic field equation in two dimensions.J. Comput. Phys. 1 (1967), 330-342. Zbl 0154.41103, 10.1016/0021-9991(67)90043-5
Reference: [12] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations.Acta Numerica 1995 Cambridge University Press Cambridge (1995), 105-158. Zbl 0829.65122, MR 1352472, 10.1017/S0962492900002531
Reference: [13] Faragó, I., Karátson, J.: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications. Advances in Computation, Vol. 11.NOVA Science Publishers New York (2002). MR 2106499
Reference: [14] Frolov, M. E.: On efficiency of the dual majorant method for the quality estimation of approximate solutions of fourth-order elliptic boundary value problems.Russ. J. Numer. Anal. Math. Model. 19 (2004), 407-418. Zbl 1064.65129, MR 2107584, 10.1515/1569398042395970
Reference: [15] Glowinski, R., Marrocco, A.: Analyse numérique du champ magnétique d'un alternateur par éléments finis et sur-relaxation ponctuelle non linéaire.Computer Methods Appl. Mech. Engin. 3 (1974), 55-85. Zbl 0288.65068, MR 0413547, 10.1016/0045-7825(74)90042-5
Reference: [16] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Pitman Boston-London-Melbourne (1985). Zbl 0695.35060, MR 0775683
Reference: [17] Han, W.: A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics Vol. 8.Springer New York (2005). MR 2101057
Reference: [18] Hannukainen, A.: Finite Element Methods for Maxwell's Equations. Master Thesis.Institute of Mathematics, Helsinki University of Technology Helsinki (2007).
Reference: [19] Hannukainen, A., Korotov, S.: Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems.Far East J. Appl. Math. 21 (2005), 289-304. Zbl 1092.65097, MR 2216003
Reference: [20] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier (2004). Zbl 1116.74003, MR 2285091
Reference: [21] Hlaváček, I., Křížek, M.: On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition; II. Boundary conditions of Newton's or Neumann's type; III. Optimal interior estimates.Apl. Mat. 32 (1987), 131-154; 200-213; 276-289. MR 0885758
Reference: [22] Horgan, C. O.: Korn's inequalities and their applications in continuum mechanics.SIAM Rev. 37 (1995), 491-511. Zbl 0840.73010, MR 1368384, 10.1137/1037123
Reference: [23] Kachanov, L. M.: Foundations of the Theory of Plasticity.North-Holland Amstedram (1971). Zbl 0231.73015, MR 0483881
Reference: [24] Karátson, J.: On the Lipschitz continuity of derivatives for some scalar nonlinearities.J. Math. Anal. Appl. 346 (2008), 170-176. Zbl 1152.47047, MR 2428281, 10.1016/j.jmaa.2008.05.053
Reference: [25] Karátson, J., Korotov, S.: Discrete maximum principles for FEM solutions of some nonlinear elliptic interface problems.Int. J. Numer. Anal. Model. 6 (2009), 1-16. Zbl 1163.65076, MR 2574894
Reference: [26] Karátson, J., Korotov, S.: Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems.Helsinki University of Technology, Institute of Mathematics, Research Report A527; July 2007.
Reference: [27] Korotov, S.: A posteriori error estimation of goal-oriented quantities for elliptic type BVPs.J. Comput. Appl. Math. 191 (2006), 216-227. Zbl 1089.65120, MR 2219926, 10.1016/j.cam.2005.06.038
Reference: [28] Korotov, S.: Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions.Appl. Math. 52 (2007), 235-249. Zbl 1164.65485, MR 2316154, 10.1007/s10492-007-0012-7
Reference: [29] Korotov, S.: Global a posteriori error estimates for convection-reaction-diffusion problems.Appl. Math. Modelling 32 (2008), 1579-1586. Zbl 1176.65126, MR 2412433, 10.1016/j.apm.2007.04.013
Reference: [30] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Kluwer Academic Publishers Dordrecht (1996). MR 1431889
Reference: [31] Kuzmin, D., Hannukainen, A., Korotov, S.: A new a posteriori error estimate for convection-reaction-diffusion problems.J. Comput. Appl. Math. 218 (2008), 70-78. MR 2431599, 10.1016/j.cam.2007.04.033
Reference: [32] Maz'ja, V. G.: Sobolev Spaces.Springer Berlin (1985). Zbl 0692.46023
Reference: [33] Miersemann, E.: Zur Regularität verallgemeinerter Lösungen von quasilinearen elliptischen Differentialgleichungen zweiter Ordnung in Gebieten mit Ecken.Z. Anal. Anw. 1 (1982), 59-71. Zbl 0518.35011, MR 0719164, 10.4171/ZAA/29
Reference: [34] Mikhlin, S. G.: The Numerical Performance of Variational Methods. Walters Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics.Walters Noordhoff Publishing Groningen (1971). MR 0278506
Reference: [35] Mikhlin, S. G.: Constants in Some Inequalities of Analysis. A Wiley-Interscience Publication.John Wiley & Sons Chichester (1986). MR 0853915
Reference: [36] Muzalevsky, A. V., Repin, S. I.: On two-sided error estimates for approximate solutions of problems in the linear theory of elasticity.Russ. J. Numer. Anal. Math. Model. 18 (2003), 65-85. Zbl 1027.74070, MR 1961986, 10.1515/156939803322008209
Reference: [37] Nečas, J.: Les méthodes directes en théorie des équations elliptiques.Academia Prague (1967). MR 0227584
Reference: [38] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Studies in Applied Mechanics 3.Elsevier Scientific Publishing Amsterdam-New York (1980). MR 0600655
Reference: [39] Neittaanmäki, P., Repin, S.: A posteriori error estimates for boundary-value problems related to the biharmonic operator.East-West J. Numer. Math. 9 (2001), 157-178. Zbl 0986.65101, MR 1836871
Reference: [40] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Studies in Mathematics and Its Applications 33.Elsevier Science B.V. Amsterdam (2004). MR 2095603
Reference: [41] Neumaier, A.: Certified error bounds for uncertain elliptic equations.J. Comput. Appl. Math. 218 (2008), 125-136. Zbl 1145.65088, MR 2431605, 10.1016/j.cam.2007.04.037
Reference: [42] Oden, J. T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method.Comput. Math. Appl. 41 (2001), 735-756. Zbl 0987.65110, MR 1822600, 10.1016/S0898-1221(00)00317-5
Reference: [43] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory.Zap. Nauchn. Semin. St. Petersburg, Otdel. Mat. Inst. Steklov (POMI) 243 (1997), 201-214. Zbl 0904.65064, MR 1629741
Reference: [44] Repin, S., Sauter, S., Smolianski, A.: A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions.Computing 70 (2003), 205-233. Zbl 1128.35319, MR 2011610, 10.1007/s00607-003-0013-7
Reference: [45] Repin, S., Sauter, S., Smolianski, A.: A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions.J. Comput. Appl. Math. 164/165 (2004), 601-612. Zbl 1038.65114, MR 2056902, 10.1016/S0377-0427(03)00491-6
Reference: [46] Repin, S., Xanthis, L. S.: A posteriori error estimation for elastoplastic problems based on duality theory.Comput. Methods Appl. Mech. Eng. 138 (1996), 317-339. MR 1422336, 10.1016/S0045-7825(96)01136-X
Reference: [47] Rüter, M., Korotov, S., Steenbock, C.: Goal-oriented error estimates based on different FE-spaces for the primal and the dual problem with applications to fracture mechanics.Comput. Mech. 39 (2007), 787-797. Zbl 1178.74172, MR 2298591, 10.1007/s00466-006-0069-2
Reference: [48] Vejchodský, T.: Guaranteed and locally computable a posteriori error estimate.IMA J. Numer. Anal. 26 (2006), 525-540. Zbl 1096.65112, MR 2241313, 10.1093/imanum/dri043
Reference: [49] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.John Wiley & Sons-Teubner Chichester-Stuttgart (1996).
Reference: [50] Vohralík, M.: A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization.C. R. Math., Acad. Sci. Paris 346 (2008), 687-690. Zbl 1142.65086, MR 2423279, 10.1016/j.crma.2008.03.006
Reference: [51] Waterhouse, W. C.: The absolute-value estimate for symmetric multilinear forms.Linear Algebra Appl. 128 (1990), 97-105. Zbl 0699.15012, MR 1049074
Reference: [52] Zeidler, E.: Nonlinear Functional Analysis and Its Applications.Springer New York (1986). Zbl 0583.47050, MR 0816732
Reference: [53] Zienkiewicz, O. C., Zhu, J. Z.: A simple error estimator and adaptive procedure for practical engineering analysis.Int. J. Numer. Methods Eng. 24 (1987), 337-357. Zbl 0602.73063, MR 0875306, 10.1002/nme.1620240206
.

Files

Files Size Format View
AplMat_54-2009-4_1.pdf 436.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo