Previous |  Up |  Next

Article

Title: Existence results for non-linear singular integral equations with Hilbert kernel in Banach spaces (English)
Author: Saleh, Mohmed H.
Author: Amer, Samir M.
Author: Ahmed, Marwa H.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 4
Year: 2009
Pages: 337-349
Summary lang: English
.
Category: math
.
Summary: A class of non-linear singular integral equations with Hilbert kernel and a related class of quasi-linear singular integro-differential equations are investigated by applying Schauder's fixed point theorem in Banach spaces. (English)
Keyword: non-linear singular integral equation
Keyword: Schauder's fixed point theorem
Keyword: Banach space
Keyword: Hilbert kernel
Keyword: quasi-linear singular integro-differential equations
MSC: 45E99
MSC: 45F15
MSC: 45G05
MSC: 45G10
MSC: 45J05
MSC: 47N20
idZBL: Zbl 1212.45006
idMR: MR2520834
DOI: 10.1007/s10492-009-0021-9
.
Date available: 2010-07-20T13:12:01Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140369
.
Reference: [1] Amer, S. M.: Existence results for a class of non-linear singular integral equations with shift.Il Nuovo Cimento B 120 (2005), 313-333. MR 2175853
Reference: [2] Amer, S. M.: On the solvability of non-linear singular integral equation and integro-differential equations of Cauchy type (II).Proc. Math. Phys. Soc. Egypt No. 78 (2003), 91-110. MR 2085958
Reference: [3] Gakhov, F. D.: Boundary Value Problems.Dover Publ. New York (1990). Zbl 0830.30026, MR 1106850
Reference: [4] Griffel, D. H.: Applied Functional Analysis.John Wiley & Sons New York (1981). Zbl 0461.46001, MR 0637334
Reference: [5] Gusejnov, A. I., Mukhtarov, Kh. Sh.: Introduction to the Theory of Nonlinear Singular Integral Equations.Nauka Moscow (1980), Russian. Zbl 0474.45003, MR 0591672
Reference: [6] Heikkilä, S., Reffett, K.: Fixed point theorems and their applications to the theory of Nash equilibria.Nonlinear Anal., Theory, Methods Appl. 64 (2006), 1415-1436. MR 2200151, 10.1016/j.na.2005.06.043
Reference: [7] Junghanns, P., Weber, U.: On the solvability of nonlinear singular integral equations.Z. Anal. Anwend. 12 (1993), 683-698. Zbl 0790.45004, MR 1264861, 10.4171/ZAA/537
Reference: [8] Junghanns, P., Semmler, G., Weber, U., Wegert, E.: Nonlinear singular integral equations on a finite interval.Math. Methods Appl. Sci. 24 (2001), 1275-1288. Zbl 1003.45001, MR 1857679, 10.1002/mma.272
Reference: [9] Ladopoulos, E. G., Zisis, V. A.: Nonlinear finite-part singular integral equations arising in two-dimensional fluid mechanics.Nonlinear Anal., Theory Methods Appl. 42 (2000), 277-290. Zbl 0963.45008, MR 1773984, 10.1016/S0362-546X(98)00347-2
Reference: [10] Ladopoulos, E. G., Zisis, V. A.: Existence and uniqueness for nonlinear singular integral equations used in fluid mechanics.Appl. Math. 42 (1997), 345-367. Zbl 0906.76076, MR 1467554, 10.1023/A:1023058024885
Reference: [11] Ladopoulos, E. G., Zisis, V. A.: Nonlinear singular integral approximations in Banach spaces.Nonlinear Anal., Theory, Methods Appl. 26 (1996), 1293-1299. Zbl 0856.65147, MR 1376104, 10.1016/0362-546X(95)00008-J
Reference: [12] Ladopoulos, E. G.: Non-linear singular integral equations in real elastodynamics by using Hilbert transformations.Nonlinear Anal., Real World Appl. 6 (2005), 531-536. MR 2129562
Reference: [13] Lusternik, L. A., Sobolev, V. J.: Elements of Functional Analysis.Gordon and Breach Science Publishers New York (1986). MR 0350359
Reference: [14] Mikhlin, S. G., Prössdorf, S.: Singular Integral Operators.Akademie-Verlag Berlin (1986). MR 0881386
Reference: [15] Nassr-Eddine Tatar: On the integral inequality with a kernel singular in time and space.J. Inequal. Pure Appl. Math. 4 (2003). MR 2051583
Reference: [16] Pogorzelski, W.: Integral Equations and Their Applications, Vol. 1.Oxford Pergamon Press/PWN Oxford/Warszawa (1966). MR 0201934
Reference: [17] L. von Wolfersdorf: Class of nonlinear singular integral and integro-differential equations with Hilbert kernel.Zeitschrift Anal. Anwend. 8 (1989), 563-570. MR 1050095, 10.4171/ZAA/375
Reference: [18] L. von Wolfersdorf: On the theory of nonlinear singular integral equations of Cauchy type.Math. Methods Appl. Sci. 7 (1985), 493-517. Zbl 0582.45019, MR 0827209, 10.1002/mma.1670070136
.

Files

Files Size Format View
AplMat_54-2009-4_2.pdf 243.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo