Previous |  Up |  Next

Article

Title: Hyperbolic boundary value problem with equivalued surface on a domain with thin layer (English)
Author: Li, Fengquan
Author: Sun, Weiwei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 4
Year: 2009
Pages: 351-375
Summary lang: English
.
Category: math
.
Summary: This paper deals with a kind of hyperbolic boundary value problems with equivalued surface on a domain with thin layer. Existence and uniqueness of solutions are given, and the limit behavior of solutions is studied in this paper. (English)
Keyword: limit behavior of solutions
Keyword: existence
Keyword: uniqueness
Keyword: equivalued surface
Keyword: equivalued interface
Keyword: hyperbolic equation
MSC: 35A01
MSC: 35A02
MSC: 35A05
MSC: 35B40
MSC: 35L20
idZBL: Zbl 1212.35013
idMR: MR2520835
DOI: 10.1007/s10492-009-0022-8
.
Date available: 2010-07-20T13:13:10Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140370
.
Reference: [1] Brezis, H.: Analyse Fonctionnelle. Théorie et Applications.Masson Paris (1993), French. MR 0697382
Reference: [2] Chen, Y.: Second Order Parabolic Differential Equations.Peking University Press Beijing (2003), Chinese.
Reference: [3] Damlamian, A., Ta-tsien Li: Comportements limites des solutions de certains probl\`emes mixtes pour des équations hyperboliques linéaires.Commun. Partial Differ. Equations 7 (1982), 117-139 French. Zbl 0504.35052, MR 0646133, 10.1080/03605308208820219
Reference: [4] DiBenedetto, E.: Degenerate Parabolic Equations.Springer New York (1993). Zbl 0794.35090, MR 1230384
Reference: [5] Evans, L. C.: Partial Differential Equations. Graduate Studies in Math. Vol. 19.AMS, American Mathematical Society Providence (1998). MR 1625845
Reference: [6] Ladyzhenskaya, O. A.: The Boundary Value Problems of Mathematical Physics.Springer Berlin (1985). Zbl 0588.35003, MR 0793735
Reference: [7] Li, F.: Limit behaviour of solutions to a class of boundary value problem with equivalued surface for hyperbolic equations.Asymptotic Anal. 22 (2000), 163-176. Zbl 0946.35046, MR 1742533
Reference: [8] Ta-tsien Li et al.: Boundary value problems with equivalued surface boundary conditons for self-adjoint elliptic differential equations I, II.Fudan J., Nat. Sci. 1 (1976), 61-71, 136-145 Chinese.
Reference: [9] Ta-tsien Li: A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis.J. Comput. Appl. Math. 28 (1989), 49-62. 10.1016/0377-0427(89)90320-8
Reference: [10] Ta-tsien Li, Song-mu Zheng, Yong-ji Tan, Wei-xi Shen: Boundary Value Problem with Equivalued Surface and Resistivity Well-Logging. Pitman Research Notes in Math. Series 382.Longman Harlow (1998). MR 1638883
Reference: [11] Ta-tsien Li, Yan, J.: Limit behaviour of solutions to certain kinds of boundary value problems with equivalued surface.Asymptotic Anal. 21 (1999), 23-35. Zbl 0936.35053, MR 1718640
Reference: [12] Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires.Dunod & Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [13] Lions, J.-L., Magenes, E.: Non-Homogeneous Boudary Value Problems and Applications, Vol. II.Springer Berlin (1972). MR 0350178
Reference: [14] Zeidler, E.: Nonlinear Functional Analysis and its Applications. II/A: Linear Monotone Operators.Springer New York (1990). Zbl 0684.47028, MR 1033497
Reference: [15] Zhang, H., Wang, X., Zhang, B.: Sound Waves and Acoustic Fields in Boreholes.Science Press Beijing (2004), Chinese.
.

Files

Files Size Format View
AplMat_54-2009-4_3.pdf 321.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo