Full entry |
PDF
(0.7 MB)
Feedback

unilateral contact and friction; solution-dependent coefficient of friction

References:

[1] Ciarlet, P. G.: **The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4**. North-Holland Amsterdam-New York-Oxford (1978). MR 0520174

[2] Clement, P.: **Approximation by finite element functions using local regularization**. Rev. Franc. Automat. Inform. Rech. Operat. 9, R-2 (1975), 77-84. MR 0400739 | Zbl 0368.65008

[3] Duvaut, G., Lions, J.-L.: **Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften, Band 219**. Springer Berlin-Heidelberg-New York (1976). MR 0521262

[4] Glowinski, R.: **Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics**. Springer New York (1984). MR 0737005

[5] Haslinger, J., Hlaváček, I., Nečas, J.: **Numerical methods for unilateral problems in solid mechanics**. Handbook of Numerical Analysis, Vol. IV P. G. Ciarlet et al. North-Holland Amsterdam (1995), 313-485. MR 1422506

[6] Haslinger, J., Vlach, O.: **Signorini problem with a solution dependent coefficient of friction (model with given friction): Approximation and numerical realization**. Appl. Math. 50, (2005), 153-171. DOI 10.1007/s10492-005-0010-6 | MR 2125156 | Zbl 1099.65109

[7] Hlaváček, I.: **Finite element analysis of a static contact problem with Coulomb friction**. Appl. Math. 45 (2000), 357-379. DOI 10.1023/A:1022220711369 | MR 1777018

[8] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: **Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences, Vol. 66**. Springer New York (1988). DOI 10.1007/978-1-4612-1048-1 | MR 0952855

[9] Kikuchi, N., Oden, J. T.: **Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, Vol. 8**. SIAM Philadelphia (1988). MR 0961258

[10] Kučera, R.: **Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints**. SIAM J. Optim. 19 (2008), 846-862. DOI 10.1137/060670456 | MR 2448917 | Zbl 1168.65028

[11] Ligurský, T.: **Approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution. Diploma thesis MFF UK, 2007 ( http://artax.karlin.mff.cuni.cz/ {ligut2am/tl21.pdf})**.