Previous |  Up |  Next

Article

Title: A unified approach to singular problems arising in the membrane theory (English)
Author: Rachůnková, Irena
Author: Pulverer, Gernot
Author: Weinmüller, Ewa B.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 1
Year: 2010
Pages: 47-75
Summary lang: English
.
Category: math
.
Summary: We consider the singular boundary value problem $$ (t^nu'(t))'+ t^nf(t,u(t))=0, \quad \lim _{t\to 0+}t^nu'(t)=0, \quad a_0u(1)+a_1u'(1-)=A, $$ where $f(t,x)$ is a given continuous function defined on the set $(0,1]\times (0,\infty )$ which can have a time singularity at $t=0$ and a space singularity at $x=0$. Moreover, $n\in \Bbb N$, $n\ge 2$, and $a_0$, $a_1$, $A$ are real constants such that $a_0\in (0,\infty )$, whereas $a_1,A\in [0,\infty )$. The main aim of this paper is to discuss the existence of solutions to the above problem and apply the general results to cover certain classes of singular problems arising in the theory of shallow membrane caps, where we are especially interested in characterizing positive solutions. We illustrate the analytical findings by numerical simulations based on polynomial collocation. (English)
Keyword: singular mixed boundary value problem
Keyword: positive solution
Keyword: shallow membrane
Keyword: collocation method
Keyword: lower and upper functions
MSC: 34B15
MSC: 34B16
MSC: 34B18
MSC: 65L10
MSC: 74K15
idZBL: Zbl 1224.34072
idMR: MR2585561
DOI: 10.1007/s10492-010-0002-z
.
Date available: 2010-07-20T13:31:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140387
.
Reference: [1] Agarwal, R. P., O'Regan, D.: An infinite interval problem arising in circularly symmetric deformations of shalow membrane caps.Int. J. Non-Linear Mech. 39 (2004), 779-784. MR 2036912, 10.1016/S0020-7462(03)00041-6
Reference: [2] Agarwal, R. P., O'Regan, D.: Singular problems arising in circular membrane theory.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 965-972. Zbl 1056.34029, MR 2008758
Reference: [3] Agarwal, R. P., Staněk, S.: Nonnegative solutions of singular boundary value problems with sign changing nonlinearities.Comput. Math. Appl. 46 (2003), 1827-1837. MR 2018768, 10.1016/S0898-1221(03)90239-2
Reference: [4] Auzinger, W., Koch, O., Weinmüller, E.: Efficient collocation schemes for singular boundary value problems.Numer. Algorithms 31 (2002), 5-25. MR 1950909, 10.1023/A:1021151821275
Reference: [5] Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.: A collocation code for boundary value problems in ordinary differential equations.Numer. Algorithms 33 (2003), 27-39. MR 2005549, 10.1023/A:1025531130904
Reference: [6] Auzinger, W., Koch, O., Weinmüller, E.: Analysis of a new error estimate for collocation methods applied to singular boundary value problems.SIAM J. Numer. Anal. 42 (2005), 2366-2386. MR 2139397, 10.1137/S0036142902418928
Reference: [7] Auzinger, W., Koch, O., Weinmüller, E.: Efficient mesh selection for collocation methods applied to singular BVPs.J. Comput. Appl. Math. 180 (2005), 213-227. MR 2141496, 10.1016/j.cam.2004.10.013
Reference: [8] Baxley, J. V., Robinson, S. B.: Nonlinear boundary value problems for shallow membrane caps. II.J. Comput. Appl. Math. 88 (1998), 203-224. Zbl 0928.74054, MR 1609149, 10.1016/S0377-0427(97)00216-1
Reference: [9] Budd, C. J., Koch, O., Weinmüller, E.: Self-Similar Blow-Up in Nonlinear {PDE}s. AURORA TR-2004-15.Institute for Analysis and Scientific Computing, Vienna Univ. of Technology, Austria (2004), available at http://www.vcpc.univie.ac.at/aurora/publications/.
Reference: [10] Budd, C. J., Koch, O., Weinmüller, E.: Computation of self-similar solution profiles for the nonlinear Schrödinger equation.Computing 77 (2006), 335-346. MR 2244946, 10.1007/s00607-005-0157-8
Reference: [11] Budd, C. J., Koch, O., Weinmüller, E.: From nonlinear PDEs to singular ODEs.Appl. Numer. Math. 56 (2006), 413-422. MR 2207599, 10.1016/j.apnum.2005.04.012
Reference: [12] Coster, C. De, Habets, P.: The lower and upper solutions method for boundary value problems.Handbook of Differential Equations, Ordinary Differential Equations, Vol. I A. Caňada, P. Drábek, A. Fonda Elsevier/North Holland Amsterdam (2004), 69-161. MR 2166490, 10.1016/S1874-5725(00)80004-8
Reference: [13] Hoog, F. de, Weiss, R.: Collocation methods for singular boundary value problems.SIAM J. Numer. Anal. 15 (1978), 198-217. Zbl 0398.65051, MR 0468203, 10.1137/0715013
Reference: [14] Dickey, R. W.: Rotationally symmetric solutions for shallow membrane caps.Q. Appl. Math. 47 (1989), 571-581. Zbl 0683.73022, MR 1012280, 10.1090/qam/1012280
Reference: [15] Johnson, K. N.: Circularly symmetric deformation of shallow elastic membrane caps.Q. Appl. Math. 55 (1997), 537-550. Zbl 0885.73027, MR 1466147, 10.1090/qam/1466147
Reference: [16] Kannan, R., O'Regan, D.: Singular and nonsingular boundary value problems with sign changing nonlinearities.J. Inequal. Appl. 5 (2000), 621-637. Zbl 0976.34017, MR 1812574
Reference: [17] Kiguradze, I. T., Shekhter, B. L.: Singular boundary value problems for second order ordinary differential equations.Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat. 30 (1987), 105-201 Russian. Zbl 0631.34021, MR 0925830
Reference: [18] Kitzhofer, G.: Numerical treatment of implicit singular {BVP}s.PhD. Thesis Institute for Analysis and Scientific Computing, Vienna Univ. of Technology, Austria. In preparation.
Reference: [19] Kitzhofer, G., Koch, O., Weinmüller, E.: Collocation methods for the computation of bubble-type solutions of a singular boundary value problem in hydrodynamics.J. Sci. Comput (to appear). Available at http://www.math.tuwien.ac.at/ {ewa}. MR 2335788
Reference: [20] Koch, O.: Asymptotically correct error estimation for collocation methods applied to singular boundary value problems.Numer. Math. 101 (2005), 143-164. Zbl 1076.65073, MR 2194722, 10.1007/s00211-005-0617-2
Reference: [21] Rachůnková, I., Koch, O., Pulverer, G., Weinmüller, E.: On a singular boundary value problem arising in the theory of shallow membrane caps.J. Math. Anal. Appl. 332 (2007), 523-541. MR 2319681, 10.1016/j.jmaa.2006.10.006
Reference: [22] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations, Vol. 3.A. Caňada, P. Drábek, A. Fonda Elsevier Amsterdam (2006). MR 2457638
Reference: [23] Ascher, U. M., Mattheij, R. M. M., Russell, R. D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations.Prentice-Hall Englewood Cliffs (1988). Zbl 0671.65063, MR 1000177
Reference: [24] Weinmüller, E.: Collocation for singular boundary value problems of second order.SIAM J. Numer. Anal. 23 (1986), 1062-1095. MR 0859018, 10.1137/0723074
.

Files

Files Size Format View
AplMat_55-2010-1_2.pdf 1.020Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo