Previous |  Up |  Next

Article

Title: Global solution to a generalized nonisothermal Ginzburg-Landau system (English)
Author: Fterich, Nesrine
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 1
Year: 2010
Pages: 1-46
Summary lang: English
.
Category: math
.
Summary: The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, {\it 5} (2005), 753--768. The existence of solutions to a related Neumann-Robin problem is established in an $N \le 3$-dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with $L^1$ data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates. (English)
Keyword: nonisothermal Ginzburg-Landau (Allen-Cahn) system
Keyword: microforce balance
Keyword: existence and uniqueness results
Keyword: renormalized solutions
Keyword: Moser iterations
MSC: 35K55
MSC: 35Q56
MSC: 80A22
idZBL: Zbl 1224.35388
idMR: MR2585560
DOI: 10.1007/s10492-010-0001-0
.
Date available: 2010-07-20T13:30:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140384
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic Press New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Adams, R. A., Fournier, J.: Cone conditions and properties of Sobolev spaces.J. Math. Anal. Appl. 61 (1977), 713-734. Zbl 0385.46024, MR 0463902, 10.1016/0022-247X(77)90173-1
Reference: [3] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II.Commun. Pure Appl. Math. 12 (1959), 623-727 17 (1964), 35-92. MR 0162050, 10.1002/cpa.3160120405
Reference: [4] Alt, H. W., Pawlow, I.: A mathematical model of dynamics of non-isothermal phase separation.Physica D 59 (1992), 389-416. Zbl 0763.58031, MR 1192751, 10.1016/0167-2789(92)90078-2
Reference: [5] Attouch, H.: Variational Convergence for Functions and Operators.Pitman London (1984). Zbl 0561.49012, MR 0773850
Reference: [6] Baiocchi, C.: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert.Ann. Mat. Pura Appl. 76 (1967), 233-304 Italian. Zbl 0153.17202, MR 0223697, 10.1007/BF02412236
Reference: [7] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff Leyden (1976). Zbl 0328.47035, MR 0390843
Reference: [8] Blanchard, D., Francfort, G. A.: A few results on a class of degenerate parabolic equations.Ann. Sc. Norm. Sup. Pisa 18 (1991), 213-249. Zbl 0778.35046, MR 1129302
Reference: [9] Blanchard, D., Guibé, O.: Existence of a solution for a nonlinear system in thermoviscoelasticity.Adv. Differ. Equ. 5 (2000), 1221-1252. MR 1785674
Reference: [10] Blanchard, D., Redwane, H.: Renormalized solutions for a class of nonlinear evolution problems.J. Math. Pures Appl. 77 (1998), 117-151. Zbl 0907.35070, MR 1614645, 10.1016/S0021-7824(98)80067-6
Reference: [11] Bonfanti, G., Frémond, M., Luterotti, F.: Global solution to a nonlinear system for inversible phase changes.Adv. Math. Sci. Appl. 10 (2000), 1-24. MR 1769184
Reference: [12] Bonfanti, G., Frémond, M., Luterotti, F.: Local solutions to the full model of phase transitions with dissipation.Adv. Math. Sci. Appl. 11 (2001), 791-810. MR 1907467
Reference: [13] Bonfanti, G., Frémond, M., Luterotti, F.: Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements.Nonlinear Anal., Real World Appl. 5 (2004), 123-140. MR 2004090
Reference: [14] Bonfanti, G., Luterotti, F.: Global solution to a phase transition model with microscopic movements and accelerations in one space dimension.Commun. Pure Appl. Anal. 5 (2006), 763-777. Zbl 1137.80010, MR 2246006, 10.3934/cpaa.2006.5.763
Reference: [15] Brézis, H.: Analyse fonctionnelle. Théorie et applications.Masson Paris (1983), French. MR 0697382
Reference: [16] Colli, P.: On some doubly nonlinear evolution equations in Banach spaces.Japan J. Ind. Appl. Math. 9 (1992), 181-203. Zbl 0757.34051, MR 1170721, 10.1007/BF03167565
Reference: [17] Colli, P., Frémond, M., Klein, O.: Global existence of a solution to phase field model for supercooling.Nonlinear Anal., Real World Appl. 2 (2001), 523-539. MR 1858904
Reference: [18] Colli, P., Gilardi, G., Grasselli, M.: Well-posedness of the weak formulation for the phase-field model with memory.Adv. Differ. Equ. 2 (1997), 487-508. Zbl 1023.45501, MR 1441853
Reference: [19] Colli, P., Gilardi, G., Grasselli, M., Schimperna, G.: Global existence for the conserved phase field model with memory and quadratic nonlinearity.Port. Math. (N.S.) 58 (2001), 159-170. Zbl 0985.35094, MR 1836260
Reference: [20] Colli, P., Laurençot, Ph.: Existence and stabilization of solutions to the phase-field model with memory.J. Integral Equations Appl. 10 (1998), 169-194. MR 1646829, 10.1216/jiea/1181074220
Reference: [21] Colli, P., Luterotti, F., Schimperna, G., Stefanelli, U.: Global existence for a class of generalized systems for irreversible phase changes.NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 255-276. Zbl 1004.35061, MR 1917373, 10.1007/s00030-002-8127-8
Reference: [22] Damlamian, A.: Some results on the multi-phase Stefan problem.Commun. Partial Differ. Equations 2 (1977), 1017-1044. Zbl 0399.35054, MR 0487015, 10.1080/03605307708820053
Reference: [23] Damlamian, A., Kenmochi, N.: Evolution equations generated by subdifferentials in the dual space of $H^1(\Omega)$.Discrete Contin. Dyn. Syst. 5 (1999), 269-278. MR 1665795, 10.3934/dcds.1999.5.269
Reference: [24] DiPerna, R. J., Lions, J.-L.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability.Ann. Math. 130 (1989), 321-366. Zbl 0698.45010, MR 1014927, 10.2307/1971423
Reference: [25] DiPerna, R. J., Lions, J.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511-547. Zbl 0696.34049, MR 1022305, 10.1007/BF01393835
Reference: [26] Frémond, M.: Non-Smooth Thermomechanics.Springer Berlin (2002). MR 1885252
Reference: [27] Gurtin, M.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on microforce balance.Physica D 92 (1996), 178-192. MR 1387065, 10.1016/0167-2789(95)00173-5
Reference: [28] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-linear Equations of Parabolic Type. Translation of Mathematical Monographs, 23.AMS Providence (1968).
Reference: [29] Laurençot, Ph., Schimperna, G., Stefanelli, U.: Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions.J. Math. Anal. Appl. 271 (2002), 426-442. MR 1923644, 10.1016/S0022-247X(02)00127-0
Reference: [30] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod/Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [31] Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications.Dunod Paris (1968), French. Zbl 0165.10801
Reference: [32] Luterotti, F., Stefanelli, U.: Existence result for the one-dimensional full model of phase transitions.Z. Anal. Anwend. 21 (2002), 335-350. Zbl 1003.80003, MR 1915265, 10.4171/ZAA/1081
Reference: [33] Luterotti, F., Schimperna, G., Stefanelli, U.: Existence result for a nonlinear model related to irreversible phase changes.Math. Models Methods Appl. Sci. 11 (2001), 808-825. Zbl 1013.35045, MR 1842227, 10.1142/S0218202501001112
Reference: [34] Luterotti, F., Schimperna, G., Stefanelli, U.: Global solution to a phase field model with irreversible and constrained phase evolution.Q. Appl. Math. 60 (2002), 301-316. Zbl 1032.35109, MR 1900495, 10.1090/qam/1900495
Reference: [35] Luterotti, F., Schimperna, G., Stefanelli, U.: Local solution to Frémond's full model for irreversible phase transitions.In: Mathematical Models and Methods for Smart Materials. Proc. Conf., Cortona, Italy, June 25-29, 2001 M. Fabrizio, B. Lazzari, A. Mauro World Scientific River Edge (2002), 323-328. Zbl 1049.35096, MR 2039276
Reference: [36] Miranville, A., Schimperna, G.: Nonisothermal phase separation based on a microforce balance.Discrete Contin. Dyn. Syst., Ser. B 5 (2005), 753-768. Zbl 1140.80388, MR 2151731, 10.3934/dcdsb.2005.5.753
Reference: [37] Miranville, A., Schimperna, G.: Global solution to a phase transition model based on a microforce balance.J. Evol. Equ. 5 (2005), 253-276. Zbl 1074.35050, MR 2133444, 10.1007/s00028-005-0187-x
Reference: [38] Nirenberg, L.: On elliptic partial differential equations.Ann. Sc. Norm. Sup. Pisa, III. Ser. 123 (1959), 115-162. Zbl 0088.07601, MR 0109940
Reference: [39] Rakotoson, J. E., Rakotoson, J. M.: Analyse fonctionnelle appliquée aux équations aux dérivées partielles.Presse Universitaires de France (1999), French. Zbl 0929.46027, MR 1686529
Reference: [40] Simon, J.: Compact sets in the space $L^p(0 , T ; B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1978), 65-96. MR 0916688, 10.1007/BF01762360
Reference: [41] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Springer New York (1988). Zbl 0662.35001, MR 0953967
.

Files

Files Size Format View
AplMat_55-2010-1_1.pdf 455.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo