Previous |  Up |  Next

Article

Title: Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation (English)
Author: Ducomet, Bernard
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 3
Year: 2010
Pages: 197-219
Summary lang: English
.
Category: math
.
Summary: We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an $N$-body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is ``exact'' as $N$ tends to infinity. (English)
Keyword: time-dependent Hartree-Fock equation
Keyword: nuclear matter
MSC: 81Q05
MSC: 81V05
MSC: 81V35
MSC: 81V70
idZBL: Zbl 1224.81018
idMR: MR2657834
DOI: 10.1007/s10492-010-0008-6
.
Date available: 2010-07-20T13:42:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140395
.
Reference: [1] Amrein, W. O., Jauch, J. M., Sinha, K. B.: Scattering Theory in Quantum Mechanics. Lecture Notes and Supplements in Physics, 16.W. A. Benjamin London (1977). MR 0495999
Reference: [2] Bardos, C., Golse, F., Mauser, N. J.: Weak coupling limit of the $N$-particle Schrödinger equation.Methods Appl. Anal. 7 (2000), 275-293. Zbl 1003.81027, MR 1869286
Reference: [3] Bardos, C., Golse, F., Gottlieb, A. D., Mauser, N. J.: Mean field dynamics of fermions and the time-dependent Hartree-Fock equation.J. Math. Pures Appl., IX. Sér. 82 (2003), 665-683. Zbl 1029.82022, MR 1996777, 10.1016/S0021-7824(03)00023-0
Reference: [4] Bardos, C., Ducomet, B., Golse, F., Gottlieb, A. D., Mauser, N. J.: The TDHF approximation for Hamiltonians with $m$-particle interaction potentials. Supplement.Commun. Math. Sci. 1 (2007), 1-9. MR 2301285, 10.4310/CMS.2007.v5.n5.a2
Reference: [5] Bardos, C., Golse, F., Gottlieb, A. D., Mauser, N. J.: Derivation of the time dependent Hartree-Fock equation with Coulomb potential.Preprint.
Reference: [6] Bardos, C., Erdős, L., Golse, F., Mauser, N. J., Yau, H.-T.: Derivation of the Schrödinger-Poisson equation from the quantum $N$-body problem.C. R., Math. Acad. Sci. Paris 334 (2002), 515-520. MR 1890644, 10.1016/S1631-073X(02)02253-7
Reference: [7] Beiner, M., Flocard, H., Giai, N. Van, Quentin, P.: Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: I. Spherical description.Nucl. Phys. A238 (1975), 29-69. 10.1016/0375-9474(75)90338-3
Reference: [8] Bitaud, L.: Etude théorique de la fission des transactinides dans le cadre d'une approche microscopique.PhD. Thesis Université Paris-Sud Paris (1996).
Reference: [9] Bove, A., Prato, G. Da, Fano, G.: On the Hartree-Fock time-dependent problem.Commun. Math. Phys. 49 (1976), 25-33. MR 0456066, 10.1007/BF01608633
Reference: [10] Catto, I.: Some remarks on Hartree-type models in nuclear physics.In: Analyse mathématique de modèles de la Mécanique Quantique. PhD. Thesis Université Paris-Dauphine Paris (1992).
Reference: [11] Chabanat, E., Bonche, P., Haensel, P., Meyer, J., Schaeffer, R.: A Skyrme parametrization from subnuclear to neutron star densities.Nucl. Phys. A627 (1997), 710-746. 10.1016/S0375-9474(97)00596-4
Reference: [12] Dechargé, J., Gogny, D.: Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei.Phys. Rev. C 21 (1980), 1568-1593. 10.1103/PhysRevC.21.1568
Reference: [13] Ducomet, B.: Weak interaction limit for a model of nuclear matter.Oberwolfach Reports No 47 (2006), 2819-2822.
Reference: [14] Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system.arXiv:math-ph/0111042v3 22 May 2002. MR 1926667
Reference: [15] Fetter, A. L., Walecka, J. D.: Quantum Theory of Many-Particle Systems.McGraw Hill New York (1971).
Reference: [16] Golse, F.: The mean-field limit for the dynamics of large particle systems.Proceedings of the conference on partial differential equations, Forges-les-Eaux, France, June 2-6, 2003 Université de Nantes Nantes (2003). MR 2050595
Reference: [17] Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type.Trans. Am. Math. Soc. 70 (1951), 195-211. Zbl 0044.42701, MR 0041010
Reference: [18] Knowles, A., Frölich, J.: A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction.arXiv:0810.4282.
Reference: [19] Lions, P.-L., Gogny, D.: Hartree-Fock theory in nuclear physics.RAIRO, Modélisation Math. Anal. Numér. 20 (1986), 571-637. Zbl 0607.35078, MR 0877058, 10.1051/m2an/1986200405711
Reference: [20] Mornas, L.: Neutron stars in a Skyrme model with hyperons.arXiv:nucl-th/0407083 vl 23 Jul 2004.
Reference: [21] Ring, P., Schuck, P.: The Nuclear Many-Body Problem.Springer Berlin (1980). MR 0611683
Reference: [22] Serot, B. D., Walecka, J. D.: The Relativistic Nuclear Many-body Problem. Adv. Nucl. Phys. 16.Plenum New York (1986).
Reference: [23] Spohn, H.: Kinetic equations from Hamiltonian dynamics.Rev. Mod. Phys. 53 (1980), 600-640. Zbl 0465.76069
Reference: [24] Vautherin, D., Brink, D. M.: Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei.Phys. Rev. C 5 (1972), 626-647. 10.1103/PhysRevC.5.626
Reference: [25] Winter, C. Van, Brascamp, H. J.: The $N$-body problem with spin-orbit or Coulomb interactions.Comm. Math. Phys. 11 (1968), 19-55. MR 0260334
Reference: [26] Winter, C. Van, Brascamp, H. J.: The $N$-body problem with spin-orbit or Coulomb interactions.Comm. Math. Phys. 11 (1968), 19-55. MR 0260334
.

Files

Files Size Format View
AplMat_55-2010-3_2.pdf 348.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo