Previous |  Up |  Next

Article

Title: An active set strategy based on the multiplier function or the gradient (English)
Author: Sun, Li
Author: Fang, Liang
Author: He, Guoping
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 4
Year: 2010
Pages: 291-304
Summary lang: English
.
Category: math
.
Summary: We employ the active set strategy which was proposed by Facchinei for solving large scale bound constrained optimization problems. As the special structure of the bound constrained problem, a simple rule is used for updating the multipliers. Numerical results show that the active set identification strategy is practical and efficient. (English)
Keyword: active set
Keyword: bound constraints
Keyword: large scale problem
MSC: 90C06
MSC: 90C30
idZBL: Zbl 1224.90176
idMR: MR2737938
DOI: 10.1007/s10492-010-0022-8
.
Date available: 2010-07-20T13:49:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140401
.
Reference: [1] Burke, J. V., Moré, J. J., Toraldo, G.: Convergence properties of trust region methods for linear and convex constraints.Math. Program. 47 (1990), 305-336. MR 1068268, 10.1007/BF01580867
Reference: [2] Chen, L. F., Wang, Y. L., He, G. P.: A feasible active set QP-free method for nonlinear programming.SIAM J. Optim. 17 (2006), 401-429. Zbl 1165.90640, MR 2247744, 10.1137/040605904
Reference: [3] Dostál, Z.: A proportioning based algorithm with rate of convergence for bound constrained quadratic programming.Numer. Algorithms 34 (2003), 293-302. MR 2043903, 10.1023/B:NUMA.0000005347.98806.b2
Reference: [4] Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints.SIAM J. Optim. 9 (1998), 14-32. Zbl 0960.90080, MR 1660110, 10.1137/S1052623496305882
Reference: [5] Facchinei, F., Júdice, J., Soares, J.: An active set Newton algorithm for large-scale nonlinear programs with box constraints.SIAM J. Optim. 8 (1998), 158-186. MR 1617441, 10.1137/S1052623493253991
Reference: [6] Facchinei, F., Júdice, J., Soares, J.: Generating box-constrained optimization problems.ACM Trans. Math. Softw. 23 (1997), 443-447. 10.1145/275323.275331
Reference: [7] Facchinei, F., Lucidi, S.: Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems.J. Optimization Theory Appl. 85 (1995), 265-289. Zbl 0830.90125, MR 1333788, 10.1007/BF02192227
Reference: [8] Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization.SIAM J. Optim. 12 (2002), 1100-1125. Zbl 1035.90103, MR 1922511, 10.1137/S1052623499359890
Reference: [9] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization.Math. Program. 45 (1989), 503-528. Zbl 0696.90048, MR 1038245, 10.1007/BF01589116
Reference: [10] Moré, J. J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints.SIAM J. Optim. 1 (1991), 93-113. MR 1094793, 10.1137/0801008
Reference: [11] Ni, Q., Yuan, Y.: A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization.Math. Comput. 66 (1997), 1509-1520. Zbl 0886.65065, MR 1422793, 10.1090/S0025-5718-97-00866-1
Reference: [12] Pillo, G. Di, Facchinei, F., Grippo, L.: An $RQP$ algorithm using a differentiable exact penalty function for inequality constrained problems.Math. Program. 55 (1992), 49-68. Zbl 0767.90060, MR 1163293, 10.1007/BF01581190
Reference: [13] Schittkowski, K.: More test examples for nonlinear programming codes.Lecture Notes in Economics and Mathematical Systems, Vol. 282 Springer Berlin (1987). Zbl 0658.90060, MR 1117683
Reference: [14] Sun, L., He, G. P., Wang, Y. L., Fang, L.: An active set quasi-Newton method with projected search for bound constrained minimization.Comput. Math. Appl. 58 (2009), 161-170. Zbl 1189.90160, MR 2535978, 10.1016/j.camwa.2009.03.085
Reference: [15] Sun, L., He, G. P., Wang, Y. L., Zhou, C. Y.: An accurate active set Newton method for large scale bound constrained optimization.Appl. Math Accepted.
Reference: [16] Wang, Y. L., Chen, L. F., He, G. P.: Sequential systems of linear equations method for general constrained optimization without strict complementarity.J. Comput. Appl. Math. 182 (2005), 447-471. Zbl 1078.65055, MR 2147879, 10.1016/j.cam.2004.12.023
Reference: [17] Xiao, Y. H., Wei, Z. X.: A new subspace limited memory BFGS algorithm for large-scale bound constrained optimization.Appl. Math. Comput. 185 (2007), 350-359. Zbl 1114.65069, MR 2298454, 10.1016/j.amc.2006.06.119
Reference: [18] Zhou, C. Y., He, G. P., Wang, Y. L.: A new constraints identification technique-based QP-free algorithm for the solution of inequality constrained minimization problems.J. Comput. Math. 24 (2006), 591-608. Zbl 1112.65060, MR 2256309
.

Files

Files Size Format View
AplMat_55-2010-4_2.pdf 266.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo