Previous |  Up |  Next

Article

Title: Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence (English)
Author: Essel, Emmanuel Kwame
Author: Kuliev, Komil
Author: Kulieva, Gulchehra
Author: Persson, Lars-Erik
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 4
Year: 2010
Pages: 305-327
Summary lang: English
.
Category: math
.
Summary: We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe's method combined with the technique of two-scale convergence. \endgraf Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution. (English)
Keyword: parabolic PDEs
Keyword: Rothe's method
Keyword: two-scale convergence
Keyword: homogenization of periodic structures
Keyword: homogenization algorithm
MSC: 35B27
MSC: 35K20
MSC: 35K55
MSC: 74Q15
idZBL: Zbl 1224.35188
idMR: MR2737939
DOI: 10.1007/s10492-010-0023-7
.
Date available: 2010-07-20T13:51:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140402
.
Reference: [1] Allaire, G.: Two-scale convergence and homogenization of periodic structures. School on Homogenization, ICTP, Trieste, September 6-17, 1993..
Reference: [2] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [3] Almqvist, A., Essel, E. K., Persson, L.-E., Wall, P.: Homogenization of the unstationary incompressible Reynolds equation.Tribol. Int. 40 (2007), 1344-1350. 10.1016/j.triboint.2007.02.021
Reference: [4] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.North-Holland Amsterdam (1978). Zbl 0404.35001, MR 0503330
Reference: [5] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Elsevier Scientific Publishing Company Amsterdam-Oxford-New York (1980). MR 0558764
Reference: [6] Kačur, J.: Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order.Czech. Math. J. 28 (1978), 507-524. MR 0506431
Reference: [7] Kačur, J.: Method of Rothe in Evolution Equations.B. G. Teubner Verlagsgesellschaft Leipzig (1985). MR 0834176
Reference: [8] Kuliev, K.: Parabolic problems on non-cylindrical domains. The method of Rothe.PhD. Thesis Faculty of Applied Sciences, University of West Bohemia Pilsen (2007).
Reference: [9] Kuliev, K., Persson, L.-E.: An extension of Rothe's method to non-cylindrical domains.Appl. Math. 52 (2007), 365-389. Zbl 1164.65463, MR 2342595, 10.1007/s10492-007-0021-6
Reference: [10] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [11] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of monotone operators.C. R. Acad. Sci. Paris 330 (2000), 675-680. Zbl 0953.35041, MR 1763909, 10.1016/S0764-4442(00)00242-1
Reference: [12] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of nonlinear monotone operators.Chin. Ann. Math., Ser. B 22 (2001), 1-12. Zbl 0979.35047, MR 1823125, 10.1142/S0252959901000024
Reference: [13] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35-86. Zbl 1061.35015, MR 1912819
Reference: [14] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [15] Pachpatte, B. G.: Inequalities for Differential and Integral Equations.Academic Press San Diego (1998). Zbl 1032.26008, MR 1487077
Reference: [16] Persson, L.-E., Persson, L., Svanstedt, N., Wyller, J.: The Homogenization Method. An Introduction.Studentlitteratur Lund (1993). Zbl 0847.73003, MR 1250833
Reference: [17] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.D. Reidel Publishing Company, London, and SNTL, Prague (1982). Zbl 0522.65059, MR 0689712
Reference: [18] Vala, J.: The method of Rothe and two-scale convergence in nonlinear problems.Appl. Math. 48 (2003), 587-606. Zbl 1099.35047, MR 2025966, 10.1023/B:APOM.0000024496.35738.28
Reference: [19] Wall, P.: Homogenization of Reynolds equation by two-scale convergence.Chin. Ann. Math. Ser. B 28 (2007), 363-374. Zbl 1124.35007, MR 2339440, 10.1007/s11401-005-0166-0
.

Files

Files Size Format View
AplMat_55-2010-4_3.pdf 307.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo