Previous |  Up |  Next


long-short wave interaction; Fourier spectral method; energy estimation method; semidiscretization; evolution equations; resonance interaction; Crank-Nicolson Fourier spectral schemes; error estimates; numerical results
In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement.
[1] Bekiranov, D., Ogawa, T., Ponce, G.: On the well-posedness of Benney's interaction equation of short and long waves. Adv. Differ. Equ. 6 (1996), 919-937. MR 1409893 | Zbl 0861.35104
[2] Benney, D. J.: A general theory for interactions between short and long waves. Studies Appl. Math. 56 (1977), 81-94. DOI 10.1002/sapm197756181 | MR 0463715 | Zbl 0358.76011
[3] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics. Springer Berlin (1988). MR 0917480 | Zbl 0658.76001
[4] Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Japan 52 (1983), 1982-1995. DOI 10.1143/JPSJ.52.1982 | MR 0710730
[5] Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Japan 39 (1975), 1379-1386. DOI 10.1143/JPSJ.39.1379
[6] Lauren, Ph. C.: On a nonlinear Schrödinger equation arising in the theory of water waves. Nonlinear Anal., Theory Methods Appl. 24 (1995), 509-527. DOI 10.1016/0362-546X(94)00106-R | MR 1315692
[7] Ma, Y. C.: The complete solution of the long-wave-short-wave resonance equations. Stud. Appl. Math. 59 (1978), 201-221. DOI 10.1002/sapm1978593201 | MR 0521795 | Zbl 0399.76028
[8] Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion acoustic waves. Phys. Rev. Lett. 33 (1974), 148-151. DOI 10.1103/PhysRevLett.33.148
[9] Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer Series in Computational Mathematics Springer Berlin (1997).
[10] Tsutsumi, M.: Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation. Math. Sci. Appl. 2 (1993), 513-528. MR 1370488 | Zbl 0875.35108
[11] Yadong, S.: Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term. Chaos Solitons Fractals 26 (2005), 527-539. DOI 10.1016/j.chaos.2005.01.066 | MR 2143966
[12] Yajima, N., Oikawa, M.: Formation and interaction of sonic Longmuir soliton. Prog. Theor. Phys. 56 (1974), 1719-1739. DOI 10.1143/PTP.56.1719 | MR 0438980
[13] Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62 (1979), 370-37. DOI 10.1143/PTP.62.370
[14] Zhang, F., Xinmin, X.: Pseudospectral method for a class of system of LS wave interaction. Numer. Math. Nanjing 12 (1990), 199-214. MR 1082717
Partner of
EuDML logo