Title:
|
Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction (English) |
Author:
|
Rashid, Abdur |
Author:
|
Akram, Shakaib |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
337-350 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement. (English) |
Keyword:
|
long-short wave interaction |
Keyword:
|
Fourier spectral method |
Keyword:
|
energy estimation method |
Keyword:
|
semidiscretization |
Keyword:
|
evolution equations |
Keyword:
|
resonance interaction |
Keyword:
|
Crank-Nicolson Fourier spectral schemes |
Keyword:
|
error estimates |
Keyword:
|
numerical results |
MSC:
|
35L70 |
MSC:
|
65M06 |
MSC:
|
65M12 |
MSC:
|
65M15 |
MSC:
|
65M20 |
MSC:
|
65M70 |
idZBL:
|
Zbl 1224.65234 |
idMR:
|
MR2737941 |
DOI:
|
10.1007/s10492-010-0025-5 |
. |
Date available:
|
2010-07-20T13:52:23Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140404 |
. |
Reference:
|
[1] Bekiranov, D., Ogawa, T., Ponce, G.: On the well-posedness of Benney's interaction equation of short and long waves.Adv. Differ. Equ. 6 (1996), 919-937. Zbl 0861.35104, MR 1409893 |
Reference:
|
[2] Benney, D. J.: A general theory for interactions between short and long waves.Studies Appl. Math. 56 (1977), 81-94. Zbl 0358.76011, MR 0463715, 10.1002/sapm197756181 |
Reference:
|
[3] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics.Springer Berlin (1988). Zbl 0658.76001, MR 0917480 |
Reference:
|
[4] Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet.J. Phys. Soc. Japan 52 (1983), 1982-1995. MR 0710730, 10.1143/JPSJ.52.1982 |
Reference:
|
[5] Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves.J. Phys. Soc. Japan 39 (1975), 1379-1386. 10.1143/JPSJ.39.1379 |
Reference:
|
[6] Lauren, Ph. C.: On a nonlinear Schrödinger equation arising in the theory of water waves.Nonlinear Anal., Theory Methods Appl. 24 (1995), 509-527. MR 1315692, 10.1016/0362-546X(94)00106-R |
Reference:
|
[7] Ma, Y. C.: The complete solution of the long-wave-short-wave resonance equations.Stud. Appl. Math. 59 (1978), 201-221. Zbl 0399.76028, MR 0521795, 10.1002/sapm1978593201 |
Reference:
|
[8] Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion acoustic waves.Phys. Rev. Lett. 33 (1974), 148-151. 10.1103/PhysRevLett.33.148 |
Reference:
|
[9] Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations.Springer Series in Computational Mathematics Springer Berlin (1997). |
Reference:
|
[10] Tsutsumi, M.: Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation.Math. Sci. Appl. 2 (1993), 513-528. Zbl 0875.35108, MR 1370488 |
Reference:
|
[11] Yadong, S.: Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term.Chaos Solitons Fractals 26 (2005), 527-539. MR 2143966, 10.1016/j.chaos.2005.01.066 |
Reference:
|
[12] Yajima, N., Oikawa, M.: Formation and interaction of sonic Longmuir soliton.Prog. Theor. Phys. 56 (1974), 1719-1739. MR 0438980, 10.1143/PTP.56.1719 |
Reference:
|
[13] Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system.Prog. Theor. Phys. 62 (1979), 370-37. 10.1143/PTP.62.370 |
Reference:
|
[14] Zhang, F., Xinmin, X.: Pseudospectral method for a class of system of LS wave interaction.Numer. Math. Nanjing 12 (1990), 199-214. MR 1082717 |
. |