Previous |  Up |  Next

Article

Title: Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction (English)
Author: Rashid, Abdur
Author: Akram, Shakaib
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 4
Year: 2010
Pages: 337-350
Summary lang: English
.
Category: math
.
Summary: In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement. (English)
Keyword: long-short wave interaction
Keyword: Fourier spectral method
Keyword: energy estimation method
Keyword: semidiscretization
Keyword: evolution equations
Keyword: resonance interaction
Keyword: Crank-Nicolson Fourier spectral schemes
Keyword: error estimates
Keyword: numerical results
MSC: 35L70
MSC: 65M06
MSC: 65M12
MSC: 65M15
MSC: 65M20
MSC: 65M70
idZBL: Zbl 1224.65234
idMR: MR2737941
DOI: 10.1007/s10492-010-0025-5
.
Date available: 2010-07-20T13:52:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140404
.
Reference: [1] Bekiranov, D., Ogawa, T., Ponce, G.: On the well-posedness of Benney's interaction equation of short and long waves.Adv. Differ. Equ. 6 (1996), 919-937. Zbl 0861.35104, MR 1409893
Reference: [2] Benney, D. J.: A general theory for interactions between short and long waves.Studies Appl. Math. 56 (1977), 81-94. Zbl 0358.76011, MR 0463715, 10.1002/sapm197756181
Reference: [3] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics.Springer Berlin (1988). Zbl 0658.76001, MR 0917480
Reference: [4] Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet.J. Phys. Soc. Japan 52 (1983), 1982-1995. MR 0710730, 10.1143/JPSJ.52.1982
Reference: [5] Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear interaction between short and long capillary-gravity waves.J. Phys. Soc. Japan 39 (1975), 1379-1386. 10.1143/JPSJ.39.1379
Reference: [6] Lauren, Ph. C.: On a nonlinear Schrödinger equation arising in the theory of water waves.Nonlinear Anal., Theory Methods Appl. 24 (1995), 509-527. MR 1315692, 10.1016/0362-546X(94)00106-R
Reference: [7] Ma, Y. C.: The complete solution of the long-wave-short-wave resonance equations.Stud. Appl. Math. 59 (1978), 201-221. Zbl 0399.76028, MR 0521795, 10.1002/sapm1978593201
Reference: [8] Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion acoustic waves.Phys. Rev. Lett. 33 (1974), 148-151. 10.1103/PhysRevLett.33.148
Reference: [9] Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations.Springer Series in Computational Mathematics Springer Berlin (1997).
Reference: [10] Tsutsumi, M.: Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation.Math. Sci. Appl. 2 (1993), 513-528. Zbl 0875.35108, MR 1370488
Reference: [11] Yadong, S.: Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term.Chaos Solitons Fractals 26 (2005), 527-539. MR 2143966, 10.1016/j.chaos.2005.01.066
Reference: [12] Yajima, N., Oikawa, M.: Formation and interaction of sonic Longmuir soliton.Prog. Theor. Phys. 56 (1974), 1719-1739. MR 0438980, 10.1143/PTP.56.1719
Reference: [13] Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system.Prog. Theor. Phys. 62 (1979), 370-37. 10.1143/PTP.62.370
Reference: [14] Zhang, F., Xinmin, X.: Pseudospectral method for a class of system of LS wave interaction.Numer. Math. Nanjing 12 (1990), 199-214. MR 1082717
.

Files

Files Size Format View
AplMat_55-2010-4_5.pdf 686.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo