Previous |  Up |  Next

Article

Title: Directoid groups (English)
Author: Gardner, B. J.
Author: Parmenter, M. M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 669-681
Summary lang: English
.
Category: math
.
Summary: We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups. (English)
Keyword: directed abelian group
Keyword: variety
MSC: 06F20
MSC: 08B99
idZBL: Zbl 1174.06340
idMR: MR2455929
.
Date available: 2010-07-20T13:58:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140412
.
Reference: [1] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés.Berlin etc., Springer (1977). Zbl 0384.06022, MR 0552653
Reference: [2] Fuchs, L.: Absolutes in partially ordered groups.Kon. Nederl. Akad. Wetensch. Proc. Amsterdam 52 (1949), 251-255. Zbl 0033.10002, MR 0030526
Reference: [3] Fuchs, L.: Partially ordered algebraic systems.Oxford-London-New York-Paris, Pergamon Press (1963). Zbl 0137.02001, MR 0171864
Reference: [4] Gardner, B. J., Parmenter, M. M.: Directoids and directed groups.Algebra Univ. 33 (1995), 254-273. Zbl 0832.06005, MR 1318990, 10.1007/BF01190937
Reference: [5] Hall, T. E.: Identities for existence varieties of regular semigroups.Bull. Austral. Math. Soc. 40 (1989), 59-77. Zbl 0666.20028, MR 1020841, 10.1017/S000497270000349X
Reference: [6] Higgins, P. J.: Groups with multiple operators.Proc. London Math. Soc. 6 (1956), 366-416. Zbl 0073.01704, MR 0082492
Reference: [7] Jaffard, P.: Un contre-exemple concernant les groupes de divisibilité.C.R. Acad. Sci. Paris 243 (1956), 1264-1266. MR 0086050
Reference: [8] Jakubík, J.: On directed groups with additional operations.Math. Bohem. 118 (1993), 11-17. MR 1213828
Reference: [9] Ježek, J., Quackenbush, R.: Directoids: algebraic models of up-directed sets.Algebra Univ. 27 (1990), 49-69. MR 1025835, 10.1007/BF01190253
Reference: [10] Kopytov, V. M., Dimitrov, Z. I.: On directed groups.Siberian Math. J. 30 (1989), 895-902. Zbl 0714.06007, MR 1043436, 10.1007/BF00970912
Reference: [11] Kurosh, A. G.: Lectures on general algebra.New York, Chelsea (1963). MR 0158000
Reference: [12] Leutola, K., Nieminen, J.: Posets and generalized lattices.Algebra Univ. 16 (1983), 344-354. Zbl 0514.06003, MR 0695054
Reference: [13] McAlister, D. B.: On multilattice groups.Proc. Cambridge Phil. Soc. 61 (1965), 621-638. Zbl 0135.06203, MR 0175819
Reference: [14] Nieminen, J.: On distributive and modular $\chi$-lattices.Yokohama Math. J. 31 (1983), 13-20. Zbl 0532.06002, MR 0734154
Reference: [15] Snášel, V.: $\lambda$-lattices.Math. Bohem. 122 (1997), 267-272. MR 1600648
.

Files

Files Size Format View
CzechMathJ_58-2008-3_6.pdf 269.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo