Previous |  Up |  Next

Article

Title: Schreier loops (English)
Author: Nagy, Péter T.
Author: Strambach, Karl
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 759-786
Summary lang: English
.
Category: math
.
Summary: We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes. (English)
Keyword: extension of loops
Keyword: non-associative extension of groups
Keyword: weak associativity properties of extensions
Keyword: central extensions
MSC: 20N05
idZBL: Zbl 1166.20058
idMR: MR2455937
.
Date available: 2010-07-20T14:06:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140420
.
Reference: [1] Birkenmeier, G., Davis, B., Reeves, K., Xiao, S.: Is a semidirect product of groups necessarily a group?.Proc. Amer. Math. Soc. 118 (1993), 689-692. Zbl 0782.20053, MR 1157998, 10.1090/S0002-9939-1993-1157998-2
Reference: [2] Birkenmeier, G., Xiao, S.: Loops which are semidirect products of groups.Comm. in Algebra 23 (1995), 81-95. Zbl 0821.20059, MR 1311775, 10.1080/00927879508825207
Reference: [3] Chein, O.: Moufang loops of small order I.Trans. Amer. Math. Soc. 188 (1974), 31-51. Zbl 0286.20088, MR 0330336, 10.1090/S0002-9947-1974-0330336-3
Reference: [4] Chein, O.: Moufang loops of small order.Mem. Amer. Math. Soc. 13 (1978), 31-51. Zbl 0378.20053, MR 0466391
Reference: [5] Chein, O.: Examples and methods of construction, Chapter II in Quasigroups and Loops: Theory and Applications.O. Chein, H. O. Pflugfelder, J. D. H. Smith 27-93 Heldermann Verlag, Berlin (1990). MR 1125808
Reference: [6] Chein, O., Goodaire, E. G.: A new construction of Bol loops of order $8k$.Journal of Algebra 287 (2005), 103-122. Zbl 1084.20042, MR 2134260, 10.1016/j.jalgebra.2005.01.031
Reference: [7] Csörgő, P., Drápal, A.: Left conjugacy closed loops of nilpotency class two.Results Math. 47 (2005), 242-265. MR 2153496, 10.1007/BF03323028
Reference: [8] Figula, A.: $3$-dimensional Bol loops as sections in non-solvable Lie groups.Forum Math. 17 (2005), 431-460. Zbl 1085.53041, MR 2138500, 10.1515/form.2005.17.3.431
Reference: [9] Figula, A.: $3$-dimensional loops on non-solvable reductive spaces.Adv. Geom. 5 (2005), 391-420. Zbl 1087.53049, MR 2154833, 10.1515/advg.2005.5.3.391
Reference: [10] Figula, A.: $3$-dimensional Bol loops corresponding to solvable Lie triple systems.Publ. Math. Debrecen 70 (2007), 59-101. Zbl 1174.22001, MR 2288468
Reference: [11] Figula, A., Strambach, K.: Loops which are semidirect products of groups.Acta Math. Hungar. 114 (2007), 247-266. Zbl 1123.20061, MR 2296546, 10.1007/s10474-006-0529-3
Reference: [12] Kinyon, M. K., Kunen, K.: The structure of extra loops.Quasigroups Related Systems 12 (2004), 39-60. Zbl 1076.20065, MR 2130578
Reference: [13] Kinyon, M. K., Kunen, K., Phillips, J. D.: A generalization of Moufang and Steiner loops.Algebra Universalis 48 (2002), 81-101. Zbl 1058.20057, MR 1930034, 10.1007/s00012-002-8205-0
Reference: [14] Kinyon, M. K., Phillips, J. D., Vojtěchovský, P.: C-loops; extensions and constructions.J. Algebra Appl. 6 (2007), 1-20. MR 2302693, 10.1142/S0219498807001990
Reference: [15] Kinyon, M. K., Phillips, J. D., Vojtěchovský, P.: When is the commutant of a Bol loop a subloop.Trans. Amer. Math. Soc. 360 (2008), 2393-2408. MR 2373318, 10.1090/S0002-9947-07-04391-7
Reference: [16] Kurosh, A. G.: The Theory of Groups, Vol. 2, transl. from Russian by K. A. Hirsch.Chelsea Publishing Co., New York (1956). MR 0109842
Reference: [17] Nagy, G. P.: Algebraic commutative Moufang loops.Forum Math. 15 (2003), 37-62. Zbl 1084.20515, MR 1957278
Reference: [18] Nagy, P. T., Strambach, K.: Loops in Group Theory and Lie Theory, Expositions in Mathematics 35.Walter de Gruyter, Berlin-New York (2002). MR 1899331
Reference: [19] Pflugfelder, H. O.: Quasigroups and Loops: An Introduction.Heldermann Verlag, Berlin (1990). MR 1125767
Reference: [20] Schreier, O.: Über die Erweiterung von Gruppen I.Monatshefte f. Math. 34 (1926), 165-180. MR 1549403
Reference: [21] Schreier, O.: Über die Erweiterung von Gruppen II.Abh. Math. Sem. Univ. Hamburg 4 (1926), 321-346. 10.1007/BF02950735
Reference: [22] Suvorov, N. M., Krjuckov, N. I.: Examples of certain quasigroups and loops that permit only the discrete topologization.Russian Sib. Mat. Zh. 17 (1976), 471-473. MR 0412318
Reference: [23] Suvorov, N. M.: A commutative IP-loop that admits only discrete topologization.Russian Sib. Mat. Zh. 32 (1991), 193. MR 1155817
Reference: [24] Suzuki, M.: Group Theory, Vol. 1.Grundlehren der Mathematischen Wissenschaften 10, Springer Verlag, Berlin-New York (1982). MR 0648772
Reference: [25] Winterroth, E.: Right Bol loops with a finite dimensional group of multiplications.Publ. Math. Debrecen 59 (2001), 161-173. Zbl 1012.22005, MR 1853499
.

Files

Files Size Format View
CzechMathJ_58-2008-3_14.pdf 357.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo