Previous |  Up |  Next

Article

Title: Exchange rings in which all regular elements are one-sided unit-regular (English)
Author: Chen, Huanyin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 899-910
Summary lang: English
.
Category: math
.
Summary: Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability. (English)
Keyword: exchange ring
Keyword: one-sided unit-regularity
Keyword: idempotent
MSC: 16D70
MSC: 16E20
MSC: 16E50
MSC: 16U60
MSC: 16U99
idZBL: Zbl 1166.16004
idMR: MR2471155
.
Date available: 2010-07-21T08:04:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140429
.
Reference: [1] Ara, P.: Strongly $\pi$-regular rings have stable range one.Proc. Amer. Math. Soc. 124 (1996), 3293-3298. Zbl 0865.16007, MR 1343679, 10.1090/S0002-9939-96-03473-9
Reference: [2] Ara, P.: The exchange property for purely infinite simple rings.Proc. Amer. Math. Soc. 132 (2004), 2543-2547. Zbl 1055.16012, MR 2054778, 10.1090/S0002-9939-04-07369-1
Reference: [3] Ara, P., Goodearl, K. R., O'Meara, K. C., Pardo, E.: Separative cancellation for projective modules over exchange rings.Israel J. Math. 105 (1998), 105-137. Zbl 0908.16002, MR 1639739, 10.1007/BF02780325
Reference: [4] Ara, P., Goodearl, K. R., Pardo, E.: $K_0$ of purely infinite simple regular rings.$K$-Theory 26 (2002), 69-100. Zbl 1012.16013, MR 1918211, 10.1023/A:1016358107918
Reference: [5] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings.Comm. Algebra 29 (2001), 2293-2295. Zbl 0992.16011, MR 1837978, 10.1081/AGB-100002185
Reference: [6] Chen, H.: Elements in one-sided unit regular rings.Comm. Algebra 25 (1997), 2517-2529. Zbl 0881.16004, MR 1459573, 10.1080/00927879708826002
Reference: [7] Chen, H.: Related comparability over exchange rings.Comm. Algebra 27 (1999), 4209-4216. Zbl 0952.16010, MR 1705862, 10.1080/00927879908826691
Reference: [8] Chen, H.: Regular rings, idempotents and products of one-sided units.Comm. Algebra 34 (2006), 737-741. Zbl 1100.16009, MR 2211952, 10.1080/00927870500388026
Reference: [9] Chen, H., Li, F.: Exchange rings satisfying related comparability.Collect. Math. 53 (2002), 157-164. MR 1913515
Reference: [10] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices.J. Algebra 280 (2004), 683-698. Zbl 1067.16050, MR 2090058, 10.1016/j.jalgebra.2004.04.019
Reference: [11] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange.J. Algebra Appl. 3 (2004), 301-343. Zbl 1072.16013, MR 2096452, 10.1142/S0219498804000897
Reference: [12] Lu, D., Li, Q., Tong, W.: Comparability, stability, and completions of ideals.Comm. Algebra 32 (2004), 2617-2634. Zbl 1074.16007, MR 2099921, 10.1081/AGB-120037403
Reference: [13] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory.Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. MR 2181857
Reference: [14] Pardo, E.: Comparability, separativity, and exchange rings.Comm. Algebra 24 (1996), 2915-2929. Zbl 0859.16001, MR 1396864, 10.1080/00927879608825721
Reference: [15] Wei, J.: Unit-regularity and stable range conditions.Comm. Algebra 33 (2005), 1937-1946. Zbl 1093.16003, MR 2150852, 10.1081/AGB-200063337
Reference: [16] Tuganbaev, A. A.: Rings Close to Regular.Kluwer Academic Publishers, Dordrecht, Boston, London (2002). Zbl 1120.16012, MR 1958361
.

Files

Files Size Format View
CzechMathJ_58-2008-4_3.pdf 252.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo