Previous |  Up |  Next

Article

Title: On the vanishing viscosity method for first order differential-functional IBVP (English)
Author: Topolski, Krzysztof A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 927-947
Summary lang: English
.
Category: math
.
Summary: We consider the initial-boundary value problem for first order differential-functional equations. We present the `vanishing viscosity' method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations. (English)
Keyword: viscosity solutions
Keyword: first order equation
Keyword: parabolic equation
Keyword: differential functional equations
MSC: 35D05
MSC: 35K60
MSC: 35R10
idZBL: Zbl 1174.35018
idMR: MR2471158
.
Date available: 2010-07-21T08:06:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140432
.
Reference: [1] Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations.Ann. Inst. H. Poincaré anal. Non Linaire 13 (1996), 293-317. Zbl 0870.45002, MR 1395674, 10.1016/S0294-1449(16)30106-8
Reference: [2] Bardi, M., Crandall, M. G., Evans, L. C., Soner, H. M., Souganidis, P. E.: Viscosity Solutions and Applications.Springer-Verlag Berlin-Heidelberg-New York (1997).
Reference: [3] Brandi, P., Ceppitelli, R.: On the existance of solutions of nonlinear functional partial differential equations of the first order.Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186. MR 0632726
Reference: [4] Brandi, P., Ceppitelli, R.: Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equation of the first order.Ann. Polon. Math. 47 (1986), 121-136. Zbl 0657.35124, MR 0884930, 10.4064/ap-47-2-121-136
Reference: [5] Brzychczy, S.: Chaplygin's method for a system of nonlinear parabolic differential-functional equations.Differen. Urav. 22 (1986), 705-708 Russian. MR 0843232
Reference: [6] Brzychczy, S.: Existence of solutions for non-linear systems of differential-functional equations of parabolic type in an arbitrary domain.Ann. Polon. Math. 47 (1987), 309-317. MR 0927579, 10.4064/ap-47-3-309-317
Reference: [7] Crandall, M. G., Ishii, H., Lions, P. L.: User's guide to viscosity solutions of second order partial differential equations.Bull. Amer. Math. Soc. 27 (1992), 1-67. Zbl 0755.35015, MR 1118699, 10.1090/S0273-0979-1992-00266-5
Reference: [8] Crandall, M. G., Lions, P. L.: Viscosity solutions of Hamilton-Jacobi equations.Trans. Amer. Math. Soc. 277 (1983), 1-42. Zbl 0599.35024, MR 0690039, 10.1090/S0002-9947-1983-0690039-8
Reference: [9] Hale, J. K., Lunel, S. M. V.: Introduction to Functional Differential Equations.Springer-Verlag New York (1993). Zbl 0787.34002, MR 1243878
Reference: [10] Ishii, H., Koike, S.: Viscosity solutions of functional differential equations.Adv. Math. Sci. Appl. Gakkotosho, Tokyo 3 (1993/94), 191-218. MR 1287929
Reference: [11] Jakobsen, E. R., Karlsen, K. H.: Continuous dependence estimates for viscosity solutions of integro-PDFs.J. Differential Equations 212 (2005), 278-318. MR 2129093, 10.1016/j.jde.2004.06.021
Reference: [12] Kamont, Z.: Initial value problems for hyperbolic differential-functional systems.Boll. Un. Mat. Ital. 171 (1994), 965-984. Zbl 0832.35144, MR 1315829
Reference: [13] Kruzkov, S. N.: Generalized solutions of first order nonlinear equations in several independent variables I.Mat. Sb. 70 (1966), 394-415 II, Mat.Sb. (N.S) 72 (1967), 93-116 Russian. MR 0199543
Reference: [14] Ladyzhenskaya, O. A., Solonikov, V. A., Uralceva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Nauka, Moskva (1967), Russian Translation of Mathematical Monographs, Vol. 23, Am. Math. Soc., Providence, R.I. (1968). MR 0241822
Reference: [15] Lions, P. L.: Generalized Solutions of Hamilton-Jacobi Equations.Pitman, London (1982). Zbl 0497.35001, MR 0667669
Reference: [16] Sayah, A.: Equations d'Hamilton-Jacobi du premier ordre avec termes integro-differentiales, Parties I & II.Comm. Partial Differential Equations 16 (1991), 1057-1093. MR 1116853, 10.1080/03605309108820789
Reference: [17] Topolski, K.: On the uniqueness of viscosity solutions for first order partial differential-functional equations.Ann. Polon. Math. 59 (1994), 65-75. Zbl 0804.35138, MR 1270302, 10.4064/ap-59-1-65-75
Reference: [18] Topolski, K.: Parabolic differential-functional inequalities in a viscosity sense.Ann. Polon. Math. 68 (1998), 17-25. MR 1606607, 10.4064/ap-68-1-17-25
Reference: [19] Topolski, K. A.: On the existence of classical solutions for differential-functional IBVP.Abstr. Appl. Anal. 3 (1998), 363-375. MR 1749416, 10.1155/S1085337598000608
Reference: [20] Topolski, K. A.: On the existence of viscosity solutions for the differential-functional Cauchy problem.Comment. Math. 39 (1999), 207-223. Zbl 0972.35173, MR 1739030
Reference: [21] Topolski, Krzysztof A.: On the existence of viscosity solution for the parabolic differential-functional Cauchy problem.Preprint.
.

Files

Files Size Format View
CzechMathJ_58-2008-4_6.pdf 321.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo