Previous |  Up |  Next

Article

Title: Positive unbounded solutions of second order quasilinear ordinary differential equations and their application to elliptic problems (English)
Author: Kamo, Ken-ichi
Author: Usami, Hiroyuki
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1153-1165
Summary lang: English
.
Category: math
.
Summary: In this paper we consider positive unbounded solutions of second order quasilinear ordinary differential equations. Our objective is to determine the asymptotic forms of unbounded solutions. An application to exterior Dirichlet problems is also given. (English)
Keyword: quasilinear ordinary differential equation
Keyword: asymptotic form
Keyword: unbounded solution
MSC: 34C11
MSC: 34D05
MSC: 35B40
MSC: 35D05
MSC: 35D30
MSC: 35J62
idZBL: Zbl 1174.34433
idMR: MR2471173
.
Date available: 2010-07-21T08:13:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140447
.
Reference: [1] Bellman, R.: Stability Theory of Differential Equations.McGraw-Hill New York (1953) (Reprint: Dover, 1969). Zbl 0053.24705, MR 0061235
Reference: [2] Berkovich, L. M.: The generalized Emden-Fowler equation.In: Symmetry in Nonlinear Physics. Proc. 2nd International Conference, Kyiv, Ukraine, July 7-13, 1997 Institute of Mathematics of the National Academy of Sciences of Ukraine Kyiv (1997), 155-163. Zbl 0952.34030, MR 1600976
Reference: [3] Kamo, K.: Asymptotic equivalence for positive decaying solutions of quasilinear ordinary differential equations and its application to elliptic problems.Arch. Math., Brno 40 (2004), 209-217. MR 2068692
Reference: [4] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equation.Adv. Math. Sci. Appl. 10 (2000), 673-688. MR 1807447
Reference: [5] Kamo, K., Usami, H.: Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity.Hiroshima Math. J. 31 (2001), 35-49. Zbl 0997.34038, MR 1820693, 10.32917/hmj/1151511146
Reference: [6] Kiguradze, I. T., Chanturiya, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Dordrecht (1992).
Reference: [7] Kura, T.: The weak supersolution-subsolution method for second order quasilinear elliptic equations.Hiroshima Math. J. 19 (1989), 1-36. Zbl 0735.35056, MR 1009660, 10.32917/hmj/1206129479
Reference: [8] Lima, P. M.: Numerical methods and asymptotic error expansions for the Emden-Fowler equations.J. Comput. Appl. Math. 70 (1996), 245-266. Zbl 0854.65067, MR 1399872, 10.1016/0377-0427(95)00203-0
Reference: [9] Luning, C. D., Perry, W. L.: Positive solutions of negative exponent generalized Emden-Fowler boundary value problems.SIAM J. Math. Anal. 12 (1981), 874-879. Zbl 0478.34021, MR 0635240, 10.1137/0512073
Reference: [10] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations.Hiroshima Math. J. 32 (2002), 51-78. Zbl 1017.34053, MR 1892669, 10.32917/hmj/1151007642
Reference: [11] Tanigawa, T.: Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations.Adv. Math. Sci. Appl. 9 (1999), 907-938. Zbl 1025.34043, MR 1725693
.

Files

Files Size Format View
CzechMathJ_58-2008-4_21.pdf 264.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo