Title:
|
Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\Bbb R^n$ (English) |
Author:
|
Farwig, R. |
Author:
|
Sohr, H. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
61-79 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a bounded domain $\Omega \subset \Bbb R ^n$, $n\geq 3,$ we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system $-\Delta u + u \cdot \nabla u + \nabla p=f$, $\div u = k$, $u_{|_{\partial \Omega }}=g$ with $u \in L^q$, $q \geq n$, and very general data classes for $f$, $k$, $g$ such that $u$ may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse & Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669--717, where the existence of a weak solution which is locally regular is proved. (English) |
Keyword:
|
stationary Stokes and Navier-Stokes system |
Keyword:
|
very weak solutions |
Keyword:
|
existence and uniqueness in higher dimensions |
Keyword:
|
regularity classes in higher dimensions |
MSC:
|
35B65 |
MSC:
|
35J55 |
MSC:
|
35J65 |
MSC:
|
35Q30 |
MSC:
|
76D05 |
MSC:
|
76D07 |
idZBL:
|
Zbl 1224.76034 |
idMR:
|
MR2486616 |
. |
Date available:
|
2010-07-20T14:52:56Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140464 |
. |
Reference:
|
[1] Adams, R. A.: Sobolev Spaces.Academic Press, New York (1975). Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] Amann, H.: Nonhomogeneous Navier-Stokes equations with integrable low-regularity data.Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York (2002), 1-28. MR 1971987, 10.1007/978-1-4615-0701-7_1 |
Reference:
|
[3] Amann, H.: Navier-Stokes equations with nonhomogeneous Dirichlet data.J. Nonlinear Math. Physics 10 (2003), 1-11. MR 2063541, 10.2991/jnmp.2003.10.s1.1 |
Reference:
|
[4] Borchers, W., Miyakawa, T.: Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains.Hiroshima Math. J. 21 (1991), 621-640. MR 1148998, 10.32917/hmj/1206128724 |
Reference:
|
[5] Bogovskij, M. E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium.Soviet Math. Dokl. 20 (1979), 1094-1098. Zbl 0499.35022 |
Reference:
|
[6] Cannone, M.: Viscous flows in Besov spaces.Advances in Math. Fluid Mech., Springer, Berlin (2000), 1-34. Zbl 0980.35125, MR 1863208 |
Reference:
|
[7] Fabes, E. B., Jones, B. F., Rivière, N. M.: The initial value problem for the Navier-Stokes equations with data in $L^p$.Arch. Rational Mech. Anal. 45 (1972), 222-240. MR 0316915, 10.1007/BF00281533 |
Reference:
|
[8] Farwig, R., Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains.J. Math. Soc. Japan 46 (1994), 607-643. Zbl 0819.35109, MR 1291109, 10.2969/jmsj/04640607 |
Reference:
|
[9] Farwig, R., Galdi, G. P., Sohr, H.: A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data.J. Math. Fluid Mech. 8 (2006), 423-444. Zbl 1104.35032, MR 2258419, 10.1007/s00021-005-0182-6 |
Reference:
|
[10] Frehse, J., Růžička, M.: Weighted estimates for the stationary Navier-Stokes equations.Acta Appl. Math. 37 53-66 (1994). MR 1308745, 10.1007/BF00995129 |
Reference:
|
[11] Frehse, J., Růžička, M.: Regularity for the stationary Navier-Stokes equations in bounded domains.Arch. Rational Mech. Anal. 128 361-380 (1994). MR 1308859, 10.1007/BF00387714 |
Reference:
|
[12] Frehse, J., Růžička, M.: On the regularity of the stationary Navier-Stokes equations.Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 21 63-95 (1994). MR 1276763 |
Reference:
|
[13] Frehse, J., Růžička, M.: Existence of regular solutions to the stationary Navier-Stokes equations.Math. Ann. 302 669-717 (1995). MR 1343646, 10.1007/BF01444513 |
Reference:
|
[14] Frehse, J., Růžička, M.: Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains.Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 23 701-719 (1996). MR 1469571 |
Reference:
|
[15] Frehse, J., Růžička, M.: Regularity for steady solutions of the Navier-Stokes equations J. G. Heywood, et al. (eds.), Theory of the Navier-Stokes equations.Proc. 3rd Intern. Conf. Navier-Stokes Equations: theory and numerical methods. World Scientific Ser. Adv. Math. Appl. Sci., Singapore 47 159-178 (1998). MR 1643033, 10.1142/9789812816740_0013 |
Reference:
|
[16] Frehse, J., Růžička, M.: A new regularity criterion for steady Navier-Stokes equations.Differential Integral Equations 11 (1998), 361-368. MR 1741851 |
Reference:
|
[17] Fujiwara, D., Morimoto, H.: An $L_r$-theory of the Helmholtz decomposition of vector fields.J. Fac. Sci. Univ. Tokyo (1A) 24 (1977), 685-700. MR 0492980 |
Reference:
|
[18] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Linearized Steady Problems.Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York (1998). MR 2808162 |
Reference:
|
[19] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Nonlinear Steady Problems.Springer Tracts in Natural Philosophy, Vol. 39, New York (1998). MR 2808162 |
Reference:
|
[20] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}(\partial \Omega)$.Math. Ann. 331 (2005), 41-74. Zbl 1064.35133, MR 2107439, 10.1007/s00208-004-0573-7 |
Reference:
|
[21] Gerhardt, C.: Stationary solutions of the Navier-Stokes equations in dimension four.Math. Z. 165 (1979), 193-197. MR 0520820, 10.1007/BF01182469 |
Reference:
|
[22] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces.Math. Z. 178 (1981), 287-329. Zbl 0473.35064, MR 0635201, 10.1007/BF01214869 |
Reference:
|
[23] Giga, Y.: Domains of fractional powers of the Stokes operator in $L_r$-spaces.Arch. Rational Mech. Anal. 89 (1985), 251-265. MR 0786549, 10.1007/BF00276874 |
Reference:
|
[24] Giga, Y., Sohr, H.: On the Stokes operator in exterior domains.J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103-130. MR 0991022 |
Reference:
|
[25] Giga, Y., Sohr, H.: Abstract $L^q$-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains.J. Funct. Anal. 102 (1991), 72-94. Zbl 0739.35067, MR 1138838, 10.1016/0022-1236(91)90136-S |
Reference:
|
[26] Kato, T.: Strong $L^p$-solutions to the Navier-Stokes equations in $\Bbb R^m$ with applications to weak solutions.Math. Z. 187 (1984), 471-480. MR 0760047, 10.1007/BF01174182 |
Reference:
|
[27] Kozono, H., Yamazaki, M.: Local and global solvability of the Navier-Stokes exterior problem with Cauchy data in the space $L^{n,\infty}$.Houston J. Math. 21 (1995), 755-799. MR 1368344 |
Reference:
|
[28] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Prague (1967). MR 0227584 |
Reference:
|
[29] Simader, C. G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains.Adv. Math. Appl. Sci., World Scientific 11 (1992), 1-35. MR 1190728, 10.1142/9789814503594_0001 |
Reference:
|
[30] Solonnikov, V. A.: Estimates for solutions of nonstationary Navier-Stokes equations.J. Soviet Math. 8 (1977), 467-528. Zbl 0404.35081, 10.1007/BF01084616 |
Reference:
|
[31] Sohr, H.: The Navier-Stokes equations. An elementary functional analytic approach.Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel (2001). Zbl 0983.35004, MR 1928881 |
Reference:
|
[32] Temam, R.: Navier-Stokes Equations. Theory and numerical analysis.North-Holland, Amsterdam, New York, Tokyo (1984). Zbl 0568.35002, MR 0769654 |
Reference:
|
[33] Triebel, H.: Interpolation Theory, Function Spaces.Differential Operators. North-Holland, Amsterdam (1978). Zbl 0387.46033, MR 0503903 |
Reference:
|
[34] Wahl, W. von: Regularity of weak solutions of the Navier-Stokes equations.Proc. Symp. Pure Math. 45 (1986), 497-503. MR 0843635 |
. |